CONTENTS

1. DEFINITION OF CONNECTORS & SWITCHES	
2. LOCATION OF CONNECTORS & SWITCHES	
3. MAJOR COMPONENTS	5
4. LOCATION OF MAJOR COMPONENTS	6~7
5. PIN DESCRIPTIONS OF MAJOR CHIPS	
6. MAJOR CHIPS DESCRIPTION	
7. ASSEMBLY & DISASSEMBLY	
8. MAINTENANCE DIAGNOSTICS	
9. TROUBLE SHOOTING	
10. BOM TREE STRUCTURE	
11. EXPLODED VIEWS	
12. STRSPARE PARTS LIST	
13. SYSTEM BLOCK DIAGRAM & SCHEMATICS (MOTHERBOARD)	
SCHEMATICS (VOA BOARD)	104~107

1. DEFINITION OF CONNECTORS & SWITCHES

MAIN BOARD(TOP SIDE)		J502 : PCCARD SLOT 2.
J1 : BACKLIGHT AND LED INDICATOR CONNECTOR.		J503 : PCCARD SLOT 1.
J2 : VGA BOARD CONNECTOR.		J505 : SECONDARY IDE (CD-ROM) CONNECTOR.
J3 : FAX/MODEM/VOICE CARD CONNECTOR.		J506 : FLOPPY DISK DRIVE CONNECTOR.
J4 : EXTERNAL VGA MONITOR CONNECTOR.		BT501 : CMOS BACK-UP BATTERY SOCKET.
J5 : PARALLEL PORT CONNECTOR (PIO).		U506 : SYSTEM BIOS SOCKET.
J6 : SERIAL PORT CONNECTOR (SIO).	\bigstar	AUDIO/CHARGER BOARD(TOP SIDE)
J7 : USB PORT CONNECTOR.		J1 : TOUCHPAD BUTTON SWITCH CONNECTOR.
J8 : PORT REPLICATOR CONNECTOR.		J3 : TOUCH PAD MODULE CONNECTOR.
J9 : SYSTEM (CPU) FAN CONNECTOR.	\bigstar	AUDIO/CHARGER BOARD(BOTTOM SIDE)
J11 : EXTERNAL PS/2 KEYBOARD/MOUSE CONNECTOR.		J501 : CONNECTOR TO CONNECT WITH MAIN BOARD.
J12 : INTERNAL RIGHT CHANNEL SPEAKER CONNECTOR.		J502 : BATTERY PACK CONNECTOR.
J13 : POWER JACK (AC ADAPTOR).		J503 : EXTERNAL SPEAKER CONNECTOR.
J14 : TV OUT, S-TERMINAL CONNECTOR.		J504 : EXTERNAL MICROPHONE CONNECTOR.
J15 : INTERNAL LEFT CHANNEL SPEAKER CONNECTOR.	\Rightarrow	VGA BOARD(TOP SIDE)
J16 : J16 PRIMARY IDE CONNECTOR.		J2 : COVER SWITCH CONNECTOR.
J17 : CPU BOARD CONNECTOR.		J3 : LVDS LCD PANEL TRANSLATION BOARD CONNECTOR.
J18 : INTERNAL KEYBOARD CONNECTOR.		SW1 : SUSPEND RESUME BUTTON.
J19 : CHARGER BOARD CONNECTOR.	\mathbf{x}	VGA BOARD(BOTTOM SIDE)
J20 : INTERNAL MICROPHONE CONNECTOR.		J501 : CONNECTOR TO CONNECT WITH MAIN BOATD.
SW1 : SYSTEM POWER SWITCH.	\Rightarrow	CPU BOARD(BOTTOM SIDE)
MAIN BOARD(BOTTOM SIDE)		J501 : CONNECTOR TO CONNECT WITH MAIN BOATD.
J501 : 144 PIN 3.3V UNBUFFER DIMM SOCKET.		2

2. LOCATION OF CONNECTORS & SWITCHES (TOP SIDE)

2. LOCATION OF CONNECTORS & SWITCHES(BOTTOM SIDE)

3. MAJOR COMPONENTS

MAIN BOARD

- U1 : INTEL PIIX4 FW82371EB PCI/ISA BRIDGE.
 - U5 : TI PCI1220PDV CARDBUS PCI-PCCARD CONTROLLER.
 - U7 : MAX213 SIO DRIVE.
- U8, U504 : ON BOARD 32MB SDRAM. U9, U505
- U12 : HP FIR MODULE.
- U14 : INTEL MTXC FW82439TX PCI/ MEM/CACHE CONTROLLER.
- **U506 : FLASHABLE SYSTEM BIOS.**
- U507 : PC97338 SUPER I/O CONTROLLER.
- U509 : W48S67 CLOCK SYNTHESIZER.
- U510 : ESS ES9168S PCI AUDIO DRIVE.

U511 : KEYBOARD CONTROLLER. J501 : EXPANSION DIMM MODULE. BT501 : CMOS BACK-UP BATTERY. CPU BOARD U3, U4 : 512KB L2 CACHE. U5: TAG SRAM. **U501 : INTEL TILLAMOOK TCP CPU. VGA BOARD** U3: NM2160B VGA CONTROLLER. **AUDIO/CHARGER BOARD U3 : ESS ES1918 AC97 CODEC.**

4. LOCATION OF MAJOR COMPONENTS(TOP SIDE)

4. LOCATION OF MAJOR COMPONENTS(BOTTOM SIDE)

5. PIN DESCRIPTIONS OF MAJOR COMPONENTS

5.1 INTEL FW82439TX MEMORY/PCI/CACHE CONTROLLER (MTXC) (1) .

SYMBOL	TYPE	FUNCTION
A(31:1)	I/O	ADDRESS BUS. CONNECT TO THE ADDRESS BUS OF CPU.
BE(7:0)#	I	BYTE ENABLE. THE CPU BYTE ENABLES INDICATE WHICH
		BYTE LANE THE CURRENT CPU CYCLE IS ACCESSING.
ADS#	I	ADDRESS STATUS.THE CPU ASSERTS ADS# TO INDICATE
		THAT A NEW BUS CYCLE IS BEING DRIVEN.
BRDY#	0	BUS READY.THE TVX ASSERTS BRDY# TO INDICATES TO
		THE CPU THAT DATA IS AVAILABLE ON READS OR HAS
		BEEN RECEIVED ON WRITES.
NA#	0	NEXT ADDRESS.WHEN BURST SRAMS ARE USED IN THE SE-
		COND LEVEL CACHE OR THE SECOND LEVEL CACHE IS DIS-
		ABLE, THE TVX ASSERTS NA# IN T2 DURING CPU WRITE
		CYCLES AND WITH THE FIRST ASSERTION OF BRDY# DURI-
		NG CPU LINE FILLS.
AHOLD	0	ADDRESS HOLD. THE TVX ASSERTS AHOLD WHEN A PCI IN-
		ITIATOR IS PERFORMING A CYCLE TO DRAM.
EADS#	0	EXTERNAL ADDRESS STROBED.ASSERTS BY THE TVX TO
		REQUIRE THE FIRST LEVEL CACHE WHEN SERVICING PCI
		MASTER REFERENCES TO MAIN MEMORY.
BOFF#	0	BACK OFF.ASSERTS BY THE TVX WHEN REQUIRED TO TE-
		RMINATE A CPU CYCLE THAT WAS IN PROGRESS.
HITM#	I	HIT MODIFIED.ASSERTED BY THE CPU TO INDICATE THAT
		THE ADDRESS PRESENTED WITH THE LAST ASSERTION OF
		EADS# IS MODIFIED IN THE FIRST LEVEL CACHE AND NEED
		TO BE WRITTEN BACK.
M/ IO#	Ι	MEMORY/ IO;DATA/CONTROL;WRITE/READ.ASSERTS BY
D/ C#		THE CPU TO INDICATE THE TYPE OF CYCLE THAT THE
W/ R#		SYSTEM NEEDS TO PERFORM.
HLOCK#	Ι	HOST LOCK.ALL CPU CYCLES SAMPLED WITH THE ASSER-
		TION OF HLOCK# AND ADS#,UNTIL THE NEGATION OF
		HLOCK# MUST BE ATOMIC.
CACHE#	I	CACHEABLE.ASSERTED BY THE CPU DURING A READ CYC-
		LE TO INDICATE THE CPU WILL PERFORM A BURST LINE
		FILL.ASSERTED BY THE CPU DURING WRITE CYCLE TO IN- DICATE THE CPU WILL PERFORM A BURST WRITE-BACK CYCLE.

SYMBOL	TYPE	FUNCTION
KEN#/	Ι	CACHE ENABLE.KEN#/INV FUNCTIONS AS BOTH THE KEN#
INV		SIGNAL DURING CPU READ CYCLES, AND THE INV SIGNAL
		DURING L1 SNOOP CYCLES.
SMIACT#	Ι	SYSTEM MANAGEMENT INTERRUPT ACTIVE.SMIACT# IS
		ASSERTED BY THE CPU WHEN IT IS IN SYSTEM MANAGEM-
		ENT MODE AS A RESULT OF AN SMI.
RAS(5:0)#/	0	ROW ADDRESS STROBE(EDO/SPM).THESE PINS SELECT THE
CS(5:0)#		DRAM ROW.CHIP SELECT(SDRAM).THESE PINS ACTIVATE
		THE SDRAM AND ACCEPT COMMAND WHEN IT IS LOW.
CAS(7:0)/	0	COLUMN ADDRESS STROBE(EDO/SPM).THESE PINS SELECT
DQM(7:0)		WHICH BYTES ARE AFFECTED BY A DRAM CYCLE.
		INPUT/OUTPUT DATA MASK(SDRAM).THESE PINS ACT AS
		SYNCHRONIZED OUTPUT ENABLESDURING A READ CYCLE
		AND BYTE MASK DURING A WRITE CYCLE.
SRAS(B:A)#	0	SDRAM ROW ADDRESS STROBE(SDRAM). WHEN ACTIVE
		LOW THIS SIGNAL LATCHES ROW ADDRESS ON THE
		POSITIVE EDGE OF THE CLOCK. THIS SIGNAL ALSO ALLOWS
		ROW ACCESS AND PRE-CHARGE.
HD(63:0)	I/O	HOST DATA. THESE SIGNAL ARE CONNECTED TO HOST
		DATA BUS.
SCAS(B:A)#	0	SDRAM COLUMN ADDRSSS STROBE.SCAS(B:A)# LATCH CO-
		LUMN ADDRESS ON THE POSITIVE EDGE OF THE CLOCK
		WITH SCRAS(B:A)# LOW.THESE SIGNALS ENABLE COLUMN
		ACCESS.
MA(11:0)	0	MEMORY ADDRESS.
MWEB#	0	MEMORY WRITE ENABLE.MWE# SHOULD BE USED AS THE
		WRITE ENABLE PIN FOR THE MEMORY DATA BUS.
MWE#	0	MEMORY WRITE ENABLE.MWE# SHOULD BE USED AS THE
		WRITE ENABLE PIN FOR THE MEMORY DATA BUS.
CADV#/	0	CACE ADVANCE. ASSERTION CAUSES THE PBSRAM IN THE
		SECONDARY CACHE TO ADVANCE TO THE NEXT QWARD
		IN THE CACHE LINE.
CKE	0	SDRAM CLOCK ENABLE. WHEN THIS SIGNAL IS DIS-ASSERTED
		SDRAM ENTERS INTO POWER-DOWN MODE

8

5.1 INTEL FW82439TX MEMORY/PCI/CACHE CONTROLLER (MTXC) (2) .

SYMBOL	TYPE	FUNCTION
CADS#/	0	CACHE ADDRESS STROBE. ASSERTION CAUSES THE PBSRAM
		IN THE SECONDARY CACHE TO LOAD THE PBSRAM ADDRESS
		REGISTER FROM THE PBSRAM ADDRESS PINS.
CKEB	0	SDRAM CLOCK ENABLE. WHEN THIS SIGNAL IS DE-ASSERTED
		SDRAM ENTERS POWER-DOWN MODE.
CCS#/	0	CACHE CHIP SELECT. THE SECONDARY LEVEL CACHE WILL
		POWER UP, AND PERFORM AN ACCESS IF THIS SIGNAL IS
		ASSERTED WHEN CADS# IS ASSERTED.
COE#	0	CACHE OUTPUT ENABLE. THE SECONDARY CACHE DATA
		RAMS DRIVE THE CPUS DATA BUS WHEN COE# IS ASSERTED
GWE#	0	GLOBAL WRITE ENABLE. WHEN THE L2 RAM TYPE IS PIPE-
		LINED BURST, GWE# ASSERTED CAUSES A QWORD TO BE
		WRITTEN INTO THE SECONDARY CACHE DATA RAMS IF
		THEY ARE POWERED UP.IT IS USED FOR L2 LINE FILLS.
BWE#/	0	BYTE WRITE ENABLE/CACHE GLOBAL CHIP SELECT.WHEN
		THE L2 RAM TYPE IS PIPELINED BURST, THIS PIN FUNCTI-
		ONS AS A BYTE WRITE ENABLE. WHEN THE L2 RAM TYPE
		IS STANDARD ASYNCHRONOUS RAMS, THIS PIN ACTS AS A
		GLOBAL CHIP SELECT.
TIO(7:0)	I/O	TAG ADDRESS.THESE ARE INTPUTS DURING CPU ACCESS
		AND OUTPUTS DURING SECOND LEVEL CACHE LINE FILLS
		AND THE SECOND LEVEL CACHE LINE INVALIDATES DUE
		TO INQUIRE CYCLES.
TWE#	0	TAG WRITE ENABLE.WHEN ASSERTED.NEW STATE AND
		TAG ADDRESSES ARE WRITTEN INTO THE EXTERNAL TAG.
AD(31:0)	I/O	ADDRESS DATA. THE STANDARD PCI ADDRESS AND DATA
		LINES.
C/BE(3:0)#	I/O	COMMAND/BYTE ENABLE. THE COMMAND IS DRIVEN WITH
		FRAME# ASSERTION, BYTE ENABLES CORRESPONDING TO
		SUPPLIED OR REQUESTED DATA IS DRIVEN ON FOLLOWI-
		NG CLOCKS.
FRAME#	I/O	FRAME.ASSERTION INDICATES THE ADDRESS PHASE OF PCI
		TRANSFER.
HCLKIN	1	HOST CLOCK IN.
PCLKIN	1	PCI CLOCK IN.
GNT3#/	0	PCI GRANT.PERMISSION IS GIVEN TO THE MASTER TO UED
DEVSEL#	I/O	DEVICE SELECT. THIS SIGNAL IS DRIVEN BY THE TVX WHEN
		A PCI INITIATOR IS ATTEMPTING TO ACCESS DRAM.
REQ(3:0)#	I	REQUEST.PCI MASTER REQUESTS FOR PCI.

SYMBOL	TYPE	FUNCTION
IRDY#	I/O	INITIATOR READY ASSERTED WHEN THE INITIATOR IS
		READY FOR DATA TRANSFER.
TRDY#	I/O	TARGET READY ASSERTED WHEN THE TARGET IS READY
		FOR A DATA TRANSFER.
STOP#	I/O	STOP.ASSERTED BY THE TARGET TO REQUEST THE MAST-
I		ER TO STOP CURRENT TRANSACTION.
LOCK#	I/O	LOCK.UESD TO ESTABLISH, MAINTAIN, AND RELEASE
		RESOURCE LOCKS ON PCI.
KRQAK	I/O	KRQAK: THIS PIN IS USED WHEN A DRAM BASED CACHE
		TECHNOLOGY IS USED TO IMPLEMENT AN L2 CACHE. KRQAK IS A
		BI-DIRECTIONAL REFRESH REQUEST/ACKNOWLEDGE.
GNT(2:0)#	0	PCI GRANT.PERMISSION IS GIVEN TO THE MASTER TO UED
		PCI.
RST#	I	RESET: WHEN ASSERTED THIS SIGNAL WILL ASYNCHRONOUSLY
		RESET THE MTXC. THE PCI SIGNALS WILL ALSO TRI-STATE
		COMPLIANT TO PCI REV 2.0 AND 2.1 SPECIFICATION.
PHOLD#	Ι	PCI HOLD.THIS SIGNAL COMES FROM PIIX3.IT IS THE PII3
		REQUEST FOR PCI.
PHLDA#	0	PCI HOLD ACKNOWLEDGE. THIS SIGNAL IS DRIVEN BY THE
		TVX TO GRANT PCI TO PIIX3.
PAR	I/O	PARITY.A SIGNAL PARITY BIT IS PROVIDED OVER AD(31:0)
		AND C/BE(3:0).
CLKRUN#	I/O	CLOCK RUN: AN OPEN DRAIN OUTPUT AND ALSO AN INPUT. MTXC
		REQUESTS THE ECNTRAL RESOURCE TO START, OR MAINTAIN
		THE PCI CLOCK BY THE ASSERTION OF CLKRUN#. MTXC WILL
		TRI-STATE CLKRUN# UPON DEASSERETION OF RESET.
TESTIN#	I	TEST IN: NAND-TREE MODE IS ACTIVATED BY DRIVING THIS PIN
		WHEN REQ# PINS ARE 0.
SUSCLK	I	SUSPEND CLOCK: 32KHZ INPUT FOR DRAM REFRESH CIRCUITY AND
		HIGH CLOCKING EVENTS IN SUSPEND STATE.
SUSTAT1#	I	SUSPEND STATE: SUS_STAT1 INDICATES MTXC'S POWER PLANE
		STATUS DURING SUSPEND MODE STATE.
VREF	3.3V OR 5V	VOLTAGE REFERENCE.
VCC	3.3V	MAIN VOLTAGE SUPPLY.
VCC(CPU)	3.3V OR 2.5V	CPU INTERFACE VOLTAGE SUPPLY.
VCC(SUS)	3.3V	SUSPEND WELL VOLTAGE SUPPLY: THESE PINS ARE THE
		PRIMARY VOLTAGE SUPPLY FOR THE MTXC SUSPEND LOGIC
		AND I/O.

5.2 INTEL 82371EB PCI-TO-ISA / IDE XCELERATOR (PIIX4) (1).

SIGNAL	ТҮРЕ	DESCRIPTION] [SIGNAL	TYPE	DESCRIPTION
AD[31:0]	I/O	PCI ADDRESS/DATA. AD[31:0] is a multiplexed address and data bus. During the first clock of a transaction, AD[31:0] contain a physical byte address (32 bits).During subsequent clocks, AD[31:0] contain data. A PIIX4 Bus transaction consists of an address phase followed by one or more data	t	IDSEL	Ι	INITIALIZATION DEVICE SELECT. IDSEL is used as a chip select during PCI configuration read and write cycles. PIIX4 samples IDSEL during the address phase of a transaction. If IDSEL is sampled active, and the bus command is a configuration read or write, PIIX4 responds by asserting DEVSEL# on the next cycle.
		phases. Little-endian byte ordering is used. AD[7:0] define the least significant byte (LSB) and AD[31:24] the most significant byte (MSB). When PIIX4 is a Target, AD[31:0] are inputs during the address phase of a transaction.				PAR O CALCULATED PARITY SIGNAL. PAR is ven?parity and is calculated on 36 bits AD[31:0] plus C/BE[3:0]#. ven?parity means that the number of ? within the 36 bits plus PAR are counted and the sum is always even. PAR is always calculated on
		During the following data phase(s), PIIX4 may be asked to supply data on AD[31:0] for a PCI read, or accept data for a PCI write. As an Initiator, PIIX4 drives a valid address on AD[31:2] and 0 on AD[1:0] during the				36 bits regardless of the valid byte enables. PAR is generated for address and data phases and is only guaranteed to be valid one PCI clock after the corresponding address or data phase. PAR is driven and tri-stated identically to the AD[31:0] lines
		address phase, and drives write or latches read data on AD[31:0] during the data phase.				except that PAR is delayed by exactly one PCI clock. PAR is an output during the address phase (delayed one clock) for all PIIX4 initiated transactions. It is also an extent the deta clock (delayed one clock) for all PIIX4 initiated transactions. It is also an
C/BE#[3:0]	I/O	BUS COMMAND AND BYTE ENABLES. The command and byte enable signals are multiplexed on the same PCI pins. During the address phase of a transaction,				write transaction, and when it is the Target of a read transaction. During Reset: High-Z After Reset: High-Z During POS: High-Z
		C/BE[3:0]# define the bus command. During the data phase C/BE[3:0]# are used as Byte Enables. The Byte Enables determine which byte lanes carry meaningful data. C/BE0# applies to byte 0, C/BE1# to byte 1, etc. PIIX4 drives C/BE[3:0]# as an Initiator		PCIRST#	0	PCI RESET. PIIX4 asserts PCIRST# to reset devices that reside on the PCI bus. PIIX4 asserts PCIRST# during power-up and when a hard reset sequence is initiated through the RC register. PCIRST# is driven inactive a minimum of 1 ms after PWROK is driven
CLKRUN#	1/0	and monitors C/BE[3:0]# as a Target. During Reset: High-Z After Reset: High-Z During POS: High-Z CLOCK RUN#. This signal is used to communicate to PCI peripherals that the PCI				active. PCIRST# is driven for a minimum of 1 ms when initiated through the RC register. PCIRST# is driven asynchronously relative to PCICLK. During Reset: Low After Reset: High During POS: High
022000101		clock will be stopped. Peripherals can assert CLKRUN# to request that the PCI clock be restarted or to keep it from stopping. This function follows the protocol described in the PCI Mobile Design Guide, Revision 1.0.		PHOLD#	0	PCI HOLD. An active low assertion indicates that PIIX4 desires use of the PCI Bus. Once the PCI arbiter has asserted PHLDA# to PIIX4, it may not negate it until PHOLD# is negated by PIIX4. PIIX4 implements the passive release mechanism by toggling
DEVSEL#	I/O	During Reset: Low After Reset: Low During POS: High DEVICE SELECT. PIIX4 asserts DEVSEL# to claim a PCI transaction through positive				PHOLD# inactive for one PCICLK. During Reset: High-Z After Reset: High During POS: High
		decoding or subtractive decoding (if enabled). As an output, PIIX4 asserts DEVSEL# when it samples IDSEL active in configuration cycles to PIIX4 configuration registers. PIIX4 also asserts DEVSEL# when an internal PIIX4 address is decoded or when PIIX4		PHLDA#	Ι	PCI HOLD ACKNOWLEDGE. An active low assertion indicates that PIIX4 has been granted use of the PCI Bus. Once PHLDA# is asserted, it cannot be negated unless PHOLD# is negated first.
		subtractively or positively decodes a cycle for the ISA/EIO bus or IDE device. As an input, DEVSEL# indicates the response to a PIIX4 initiated transaction and is also sampled when deciding whether to subtractively decode the cycle. DEVSEL# is tri-stated from the leading edoe of PCIRST# DEVSEL# remains tri-stated until driven by	-	SERR#	I/O	SYSTEM ERROR. SERR# can be pulsed active by any PCI device that detects a system error condition. Upon sampling SERR# active, PIIX4 can be programmed to generate a non-maskable interrupt (NMI) to the CPU.
		PIIX4 as a target. During Reset: High-7 After Reset: High-7 During POS: High-7		STOP#	I/O	STOP. STOP# indicates that PIIX4, as a Target, is requesting an initiator to stop the current transaction As an Initiator STOP# causes PIIX4 to stop the current transaction
FRAME#	I/O	CYCLE FRAME. FRAME# is driven by the current Initiator to indicate the beginning at duration of an access. While FRAME# is asserted data transfers continue. When FRAME# is negated the transaction is in the final data phase. FRAME# is an input to	nd			STOP# is an output when PIIX4 is a Target and an input when PIIX4 is an Initiator. STOP# is tri-stated from the leading edge of PCIRST#. STOP# remains tri-stated until driven by PIIX4 as a slave.
		PILX4 when it is the Target. FRAME# is an output when PILX4 is the initiator. FRAME# remains tri-stated until driven by PILX4 as an Initiator. During Reset: High-Z After Reset: High-Z During POS: High-Z.		TRDY#	I/O	During Reset: High-Z After Reset: High-Z During POS: High-Z TARGET READY. TRDY# indicates PIIX4 ability to complete the current data phase of the transaction TRDY# is used in conjunction with IRDY# A data phase is
IRDY#	I/O	INITIATOR READY. IRDY# indicates PIIX4 ability, as an Initiator, to complete the current data phase of the transaction. It is used in conjunction with TRDY#. A data phase is completed on any clock both IRDY# and TRDY# are sampled asserted. During a write, IRDY# indicates PIIX4 has valid data present on AD[31:0]. During a read, it indicates PIIX4 is prepared to latch data. IRDY# is an input to PIIX4 when PIIX4 is the Target and an output when PIIX4 is an Initiator. IRDY# remains tri-stated until driven by PIIX4 or a meter	, ,			completed when both TRDY# and IRDY# are sampled asserted. During a read, TRDY# indicates that PIIX4, as a Target, has place valid data on AD[31:0]. During a write, it indicates PIIX4, as a Target is prepared to latch data. TRDY# is an input to PIIX4 when PIIX4 is the Initiator and an output when PIIX4 is a Target. TRDY# is tri-stated from the leading edge of PCIRST#. TRDY# remains tri-stated until driven by PIIX4 as a slave.
		ר וואי מג מ ווומגוכו.				During Keset: Filgh-Z After Keset: High-Z During POS: High-Z

5.2 INTEL 82371EB PCI-TO-ISA / IDE XCELERATOR (PIIX4) (2).

SIGNAL	TYPE	DESCRIPTION	[SIGNAL	TYPE	DESCRIPTION
AEN	0	ADDRESS ENABLE. AEN is asserted during DMA cycles to prevent I/O slaves from misinterpreting DMA cycles as valid I/O cycles. When negated, AEN indicates that an I/O slave may respond to address and I/O commands. When asserted, AEN informs I/O resources on the ISA bus that a DMA transfer is occurring. This signal is also driven high during PIIX4 initiated refresh cycles. During POS: Low		MEMR#	I/O	MEMORY READ. MEMR# is the command to a memory slave that it may drive data onto the ISA data bus. MEMR# is an output when PIIX4 is a master on the ISA Bus. MEMR# is an input when an ISA master, other than PIIX4, owns the ISA Bus. This signal is also driven by PIIX4 during refresh cycles. For DMA cycles, PIIX4, as a master, asserts MEMR#. During Reset: High-Z After Reset: High During POS: High
		BALE O BUS ADDRESS LATCH ENABLE. BALE is asserted by PIIX4 to indicate the	at th	eMEMW#	I/O	MEMORY WRITE. MEMW# is the command to a memory slave that it may latch date
		address (SA[19:0], LA[23:17]) and SBHE# signal lines are valid. The LA[23:17] address lines are latched on the trailing edge of BALE. BALE remains asserted throughout DMA and ISA master cycles. During Reset: High-Z. After Reset: Low During POS: Low				from the ISA data bus. MEMW# is an output when PIIX4 owns the ISA Bus. MEMW# is an input when an ISA master, other than PIIX4, owns the ISA Bus. For DMA cycles, PIIX4, as a master, asserts MEMW#. During Reset: High-Z After Reset: High During POS: High
IOCHK#/	Ι	I/O CHANNEL CHECK. IOCHK# can be driven by any resource on the ISA bus.	Ì	REFRESH#	I/O	REFRESH. As an output, REFRESH# is used by PIIX4 to indicate when a refresh
GPI0		When asserted, it indicates that a parity or an uncorrectable error has occurred for a device or memory on the ISA bus. A NMI will be generated to the CPU if the NMI generation is enabled. If the EIO bus is used, this signal becomes a general purpose input.				cycle is in progress. It should be used to enable the SA[7:0] address to the row address inputs of all banks of dynamic memory on the ISA Bus. Thus, when MEMR# is asserted, the entire expansion bus dynamic memory is refreshed. Memory slaves must not drive any data onto the bus during refresh. As an output, this signal is driven
IOCHRDY	I/O	I/O CHANNEL READY. Resources on the ISA Bus negate IOCHRDY to indicate that wait states are required to complete the cycle. This signal is normally high. IOCHRDY is an input when PIIX4 owns the ISA Bus and the CPU or a PCI agent is accessing an ISA slave, or during DMA transfers. IOCHRDY is output when an external ISA Bus				directly onto the ISA Bus. This signal is an output only when PIIX4 DMA refresh controller is a master on the bus responding to an internally generated request for refresh. As an input, REFRESH# is driven by 16-bit ISA Bus masters to initiate refresh cycles. During Beact: Useh 7.4 for Beact: Useh During BOS: Useh
		Master owns the ISA Bus and is accessing DRAM or a PIIX4 register. As a PIIX4 output IOCHRDY is driven inactive (low) from the falling edge of the ISA commands		RSTDRV	0	RESET DRIVE. PIIX4 asserts RSTDRV to reset devices that reside on the ISA/EIO
		After data is available for an ISA master read or PIIX4 latches the data for a write		no i biti	Ŭ	Bus. PIIX4 asserts this signal during a hard reset and during power-up. RSTDRV is
		cycle, IOCHRDY is asserted for 70 ns. After 70 ns, PIIX4 floats IOCHRDY. The 70 ns				asserted during power-up and negated after PWROK is driven active. RSTDRV is
		includes both the drive time and the time it takes PIIX4 to float IOCHRDY. PIIX4 does				also driven active for a minimum of 1 ms if a hard reset has been programmed in the
		not drive this signal when an ISA Bus master is accessing an ISA Bus slave.				RC register.
10CS16#	T	During Keset: High-Z After Keset: High-Z During POS: High-Z 16-BIT I/O CHIP SELECT This signal is driven by I/O devices on the ISA Bus to		SA[19:0]	1/0	SYSTEM ADDRESS[19:0]. These bi-directional address lines define the selection
ioesiu"	1	indicate support for 16-bit I/O bus cycles.		~[-> ••]		with the granularity of 1 byte within the 1-Megabyte section of memory defined by the
IOR#	I/O	I/O READ. IOR# is the command to an ISA I/O slave device that the slave may drive				LA[23:17] address lines. The address lines SA[19:17] that are coincident with
		data on to the ISA data bus (SD[15:0]). The I/O slave device must hold the data valid				LA[19:17] are defined to have the same values as LA[19:17] for all memory cycles.
		until after IOR# is negated. IOR# is an output when PIIX4 owns the ISA Bus. IOR# is				For I/O accesses, only SA[15:0] are used, and SA[19:16] are undefined. SA[19:0] are
		an input when an external ISA master owns the ISA Bus.				Master owns the ISA Bus. SA[19:0] are inputs when an external ISA
IOW#	1/0	JOB 111 CONTRACT CONTRACT CONTRACT AND A CONTRACT OF A CO				During Reset: High-Z After Reset: Undefined During POS: Last SA
10 10	10	data from the ISA data bus (SD[15:0]) IOW# is an output when PIIX4 owns the ISA		SBHE#	I/O	SYSTEM BYTE HIGH ENABLE. SBHE# indicates, when asserted, that a byte is
		Bus. IOW# is an input when an external ISA master owns the ISA Bus.				being transferred on the upper byte (SD[15:8]) of the data bus. SBHE# is negated
		During Reset: High-Z After Reset: High During POS: High				during refresh cycles. SBHE# is an output when PIIX4 owns the ISA Bus. SBHE# is
LA[23:17]/	I/O	ISA LA[23:17]. LA[23:17] address lines allow accesses to physical memory on the				an input when an external ISA master owns the ISA Bus.
GPO[7:1]		ISA Bus up to 16 Mbytes. LA[23:17] are outputs when PIIX4 owns the ISA Bus. The		SD[15.0]	1/0	During Reset: High-Z After Reset: Undefined During POS: High
		LA[25:17] lines become inputs whenever an ISA master owns the ISA Bus.		50[15:0]	1/0	Bus SD[15:8] correspond to the high order byte and SD[7:0] correspond to the low
		During Reset: High-Z After Reset: Undefined During POS: Last LA/GPO				order byte SD[15:0] are undefined during refresh.
MEMCS16#	I/O	MEMORY CHIP SELECT 16. MEMCS16# is a decode of LA[23:17] without any				During Reset: High-Z After Reset: Undefined During POS: High-Z
		qualification of the command signal lines. ISA slaves that are 16-bit memory devices		SMEMR#	0	STANDARD MEMORY READ. PIIX4 asserts SMEMR# to request an ISA memory
1		drive this signal low. PIIX4 ignores MEMCS16# during I/O access cycles and refresh				slave to drive data onto the data lines. If the access is below the 1-Mbyte range
		cycles. MEMCS16# is an input when PIIX4 owns the ISA Bus. PIIX4 drives this signal				(0000000h?00FFFFh) during DMA compatible, PIIX4 master, or ISA master
		low during ISA master to PCI memory cycles.				cycles, PIIX4 asserts SMEMR#. SMEMR# is a delayed version of MEMR#.

11

5.2 INTEL 82371EB PCI-TO-ISA / IDE XCELERATOR (PIIX4) (3).

SIGNAL	ТҮРЕ	DESCRIPTION	[SIGNAL	TYPE	DESCRIPTION
SMEMW#	0	STANDARD MEMORY WRITE. PIIX4 asserts SMEMW# to request an ISA memory slave to accept data from the data lines. If the access is below the 1-Mbyte range (00000000h?00FFFFFh) during DMA compatible, PIIX4 master, or ISA master cycles, PIIX4 asserts SMEMW#. SMEMW# is a delayed version of MEMW#. During Reset: High-Z After Reset: High During POS: High		XDIR# / GPO22	0	X-BUS TRANSCEIVER DIRECTION. XDIR# is tied directly to the direction control of 74?45 that buffers the X-Bus data, XD[7:0]. XDIR# is asserted (driven low) for all I/O read cycles regardless if the accesses is to a PIIX4 supported device. XDIR# is asserted for memory cycles only if BIOS or APIC space has been decoded. For PCI master initiated read cycles, XDIR# is asserted from the falling edge of either IOR# or
ZEROWS#	I	ZERO WAIT STATES. An ISA slave asserts ZEROWS# after its address and command signals have been decoded to indicate that the current cycle can be shortened. A 16-bit ISA memory cycle can be reduced to two SYSCLKs. An 8-bit memory or I/O cycle can be reduced to three SYSCLKs. ZEROWS# has no effect during 16-bit I/O cycles. If IOCHRDY is negated and ZEROWS# is asserted during the same clock, then ZEROWS# is ignored and wait states are added as a function of IOCHRDY.				MEMR# (from MEMR# only if BIOS or APIC space has been decoded), depending on the cycle type. For ISA master-initiated read cycles, XDIR# is asserted from the falling edge of either IOR# or MEMR# (from MEMR# only if BIOS space has been decoded), depending on the cycle type. When the rising edge of IOR# or MEMR# occurs, PIIX4 negates XDIR#. For DMA read cycles from the X-Bus, XDIR# is driven low from DACKx# falling and negated from DACKx# rising. At all other times, XDIR# is negated high.
A20GATE	I	ADDRESS 20 GATE. This input from the keyboard controller is logically combined wi bit 1 (FAST_A20) of the Port 92 Register, which is then output via the A20M# signal.	th			If the X-Bus not used, then this signal can be programmed to be a general purpose output.
BIUSCS#	U	BIOS CHIF'SELECT: This chip select is driven active during read or write accesses to enabled BIOS memory ranges. BIOSCS# is driven combinatorially from the ISA addresses SA[16:0] and LA[23:17], except during DMA cycles. During DMA cycles, BIOSCS# is not generated. During Reset: High After Reset: High During POS: High		XOE#/ GPO23	0	X-BUS TRANSCEIVER OUTPUT ENABLE. XOE# is tied directly to the output enable of a 74?45 that buffers the X-Bus data, XD[7:0], from the system data bus, SD[7:0]. XOE# is asserted anytime a PIIX4 supported X-Bus device is decoded, and the devices decode is enabled in the X-Bus Chip Select Enable Register (BIOSCS#, KBCCS#,
KBCCS#/ GPO26	0	KEYBOARD CONTROLLER CHIP SELECT. KBCCS# is asserted during I/O read write accesses to KBC locations 60h and 64h. It is driven combinatorially from the ISA addresses SA[19:0] and LA[23:17]. If the keyboard controller does not require a separate chip select, this signal can be programmed to a general purpose output. During Reset: High After Reset: High During POS: High/GPO	or			RTCCS#, MCCS#) or the Device Resource B (PCCS0#) and Device Resource C (PCCS1#). XOE# is asserted from the falling edge of the ISA commands (IOR#, IOW#, MEMR#, or MEMW#) for PCI Master and ISA master-initiated cycles. XOE# is negated from the rising edge of the ISA command signals for PCI Master initiated cycles and the SA[16:0] and LA[23:17] address for ISA master-initiated cycles. XOE# is not generated during any access to an X-Bus-peripheral in which its decode space has been disabled.
MCCS#	0	MICROCONTROLLER CHIP SELECT. MCCS# is asserted during I/O read or write accesses to IO locations 62h and 66h. It is driven combinatorially from the ISA addresses SA[19:0] and LA[23:17].				If an X-Bus not used, then this signal can be programmed to be a general purpose output. During Reset: High After Reset: High During POS: High/GPO
PCS0# PCS1#	0	During Reset: High After Reset: High During POS: High PROGRAMMABLE CHIP SELECTS. These active low chip selects are asserted for ISA I/O cycles which are generated by PCI masters and which hit the programmable I/O ranges defined in the Power Management section. The X-Bus buffer signals (XOE# and XDIR#) are enabled while the chip select is active. (i.e., it is assumed that the peripheral which is selected via this pin resides on the X-Bus.) During Reset: High After Reset: High During POS: High		DACK[0,1,2,3]# DACK[5,6,7]#	0	DMA ACKNOWLEDGE. The DACK# output lines indicate that a request for DMA service has been granted by PIIX4 or that a 16-bit master has been granted the bus. The active level (high or low) is programmed via the DMA Command Register. These lines should be used to decode the DMA slave device with the IOR# or IOW# line to indicate selection. If used to signal acceptance of a bus master request, this signal indicates when it is legal to assert MASTER#. If the DREQ goes inactive prior to DACK# being asserted,
RCIN#	Ι	RESET CPU. This signal from the keyboard controller is used to generate an INIT signal to the CPU.				the DACK# signal will not be asserted. During Reset: High After Reset: High During POS: High
RTCALE/ GPO25	0	REAL TIME CLOCK ADDRESS LATCH ENABLE. RTCALE is used to latch the appropriate memory address into the RTC. A write to port 70h with the appropriate RTC memory address that will be written to or read from causes RTCALE to be asserted. RTCALE is asserted on falling IOW# and remains asserted for two SYSCLKs. If the internal Real Time Clock is used, this signal can be programmed as a general purpose output.		DREQ[0,1,2,3] DREQ[5,6,7] REQ[A:C]#/	I	DMA REQUEST. The DREQ lines are used to request DMA service from PIIX4 DMA controller or for a 16-bit master to gain control of the ISA expansion bus. The active level (high or low) is programmed via the DMA Command Register. All inactive to active edges of DREQ are assumed to be asynchronous. The request must remain active until the appropriate DACKx# signal is asserted. PC/PCI DMA REQUEST. These signals are the DMA requests for PC/PCI
RTCCS#/ GPO24	0	REAL TIME CLOCK CHIP SELECT. RTCCS# is asserted during read or write I/O accesses to RTC location 71h. RTCCS# can be tied to a pair of external OR gates to generate the real time clock read and write command signals. If the internal Real Time Clock is used, this signal can be programmed as a general purpose output. During Reset: High After Reset: High During POS: High/GPO		GPI[2:4]		protocol. They are used by a PCI agent to request DMA services and follow the PCI Expansion Channel Passing protocol as defined in the <i>PCI DMA</i> section. If the PC/PCI request is not needed, these pins can be used as general-purpose inputs.

5.2 INTEL 82371EB PCI-TO-ISA / IDE XCELERATOR (PIIX4) (4).

SIGNAL	ТҮРЕ	DESCRIPTION		SIGNA
GNT[A:C]#/	0	PC/PCI DMA ACKNOWLEDGE. These signals are the DMA grants for PC/PCI		IRQ8#/
GPO[9:11]		protocol. They are used by a PIIX4 to acknowledge DMA services and follow the		GPI6
		PCI Expansion Channel Passing protocol as defined in the PCI DMA section.		
		If the PC/PCI request is not needed, these pins can be used as general-purpose		
		outputs.		
		During Reset: High After Reset: High During POS: High/GPO		
TC	0	TERMINAL COUNT. PIIX4 asserts TC to DMA slaves as a terminal count		
		indicator. PIIX4 asserts TC after a new address has been output, if the byte count		ID GO GI
		expires with that transfer. TC remains asserted until AEN is negated, unless AEN		
		is negated during an autoinitialization. IC is negated before AEN is negated during		GPO29
		an autoinitialization.		
		During Reset: Low After Reset: Low During POS: Low		IDO 12/M
APICACK#/	0	AFIC ACKNOWLEDGE. This active low output signal is asserted by PHX4 after its internal huffers are flughed in regrammed to the ADICDEO# signal. When the I/O ADIC		1KQ 12/W
GPU12		amplas this signal assorted it knows that PIIVA - buffars are fluched and that it can		
		samples this signal asserted it knows that PITA4 burlets are hushed and that it can		
		proceed to send the AFIC intertupit. The AFICACK# output is synchronous to $\mathbf{p}_{CICL}\mathbf{r}$		
		If the external APIC is not used, then this is a general nurnose output		
		During Pasat: High After Pasat: High During POS: High/GPO		
APICCS#/	0	APIC CHIP SELECT. This active low output signal is asserted when the APIC Chip		PIROIA
GPO13	0	Select is enabled and a PCI originated cycle is positively decoded within the		
01015		programmed I/O APIC address space		
		If the external APIC is not used this pin is a general-nurnose output		
		During Reset: High After Reset: High During POS: High/GPO		SERIRO/
APICREO#/	T	APIC REOUEST. This active low input signal is asserted by an external APIC		GPI7
GPI5	1	device prior to sending an interrupt over the APIC serial bus. When PIIX4 samples		011/
		this pin active it will flush its F-type DMA buffers pointing towards PCI. Once the		A20M#
		buffers are flushed. PIIX4 asserts APICACK# which indicates to the external APIC		-
		that it can proceed to send the APIC interrupt. The APICREO# input must be		
		synchronous to PCICLK.		CPURST
		If the external APIC is not used, this pin is a general-purpose input.		
		INTR OD INTERRUPT. See CPU Interface Signals.		
IRQ0/	0	INTERRUPT REQUEST 0. This output reflects the state of the internal IRQ0 signal		
GPO14		from the system timer.		
		If the external APIC is not used, this pin is a general-purpose output.		
		During Reset: Low After Reset: Low During POS: IRQ0/GPO		
		IRQ1 I INTERRUPT REQUEST 1. IRQ1 is always edge triggered and can not be mod	lifie	
		by software to level sensitive. A low to high transition on IRQ1 is latched by PIIX4.		
		IRQ1 must remain asserted until after the interrupt is acknowledged. If the input goes		
		inactive before this time, a default IRQ7 is reported in response to the interrupt		
		acknowledge cycle.		FERR#
IRQ 3:7,	Ι	INTERRUPT REQUESTS 3:7, 9:11, 14:15. The IRQ signals provide both system		
9:11,14:15		board components and ISA Bus I/O devices with a mechanism for asynchronously		
		interrupting the CPU. These interrupts may be programmed for either an edge		
		sensitive or a high level sensitive assertion mode. Edge sensitive is the default		CL D/
		configuration. An active IRQ input must remain asserted until after the interrupt is		SLP#
		acknowledged. If the input goes inactive before this time, a default IRQ7 is reported		
		in response to the interrupt acknowledge cycle.		

SIGNAL	TYPE	DESCRIPTION
IRQ8#/	I/O	IRQ 8#. IRQ8# is always an active low edge triggered interrupt and can not be
GPI6		modified by software.
		IRQ8# must remain asserted until after the interrupt is acknowledged. If the input
		goes inactive before this time, a default IRQ7 is reported in response to the interrupt
		acknowledge cycle.
		If using the internal RTC, then this can be programmed as a general-purpose input. If
		enabling an APIC, this signal becomes an output and must not be programmed as a
		general purpose input.
IRQ9OUT#/	0	IRQ9OUT#. IRQ9OUT# is used to route the internally generated SCI and SMBus
GPO29		interrupts out of the PIIX4 for connection to an external IO APIC. If APIC is disabled,
		this signal pin is a General Purpose Output.
		During Reset: High After Reset: High During POS: IRQ9OUT#/GPO
IRQ 12/M	I	INTERRUPT REQUEST 12. In addition to providing the standard interrupt function
		as described in the pin description for IRQ[3:7,9:11,14:15], this pin can also be
		programmed to provide the mouse interrupt function.
		When the mouse interrupt function is selected, a low to high transition on this signal
		is latched by PIIX4 and an INTR is generated to the CPU as IRQ12. An internal
		IRQ12 interrupt continues to be generated until a Reset or an I/O read access to
	LOD	address 60h (falling edge of IOK#) is detected.
PIRQ[A:D]#	I/OD	PROGRAMMABLE INTERRUPT REQUEST. The PIRQx# signals are active low,
	PCI	level sensitive, shareable interrupt inputs. They can be individually steered to ISA
		signal
SEDIDO/	1/0	SIGNAL INTERDURT DEQUEST. Social interrupt input decoder, turically used in
GPI7	1/0	SERIAL INTERRUPT REQUEST. Senai interrupt input decoder, typically used in
Ur1/		If not using serial interrupts, this pin can be used as a general purpose input
A20M#	OD	ADDRESS 20 MASK PILVA asserts A20M# to the CPU based on combination of Port
120101	UD	92 Register bit 1 (FAST A20) and A20GATE input signal
		During Reset: High-Z After Reset: High-Z During POS: High-Z
CPURST	OD	CPU RESET. PIIX4 asserts CPURST to reset the CPU. PIIX4 asserts CPURST during
	-	power-up and when a hard reset sequence is initiated through the RC register.
		CPURST is driven inactive a minimum of 2 ms after PWROK is driven active. CPURST
		is driven active for a minimum of 2 ms when initiated through the RC register. The
		inactive edge of CPURST is driven synchronously to the rising edge of PCICLK. If a
		hard reset is initiated through the RC register, PIIX4 resets its internal registers (in both
		core and suspend wells) to their default state.
d		This signal is active high for Pentium processor and active-low for Pentium II processor
		as determined by CONFIG1 signal.
		For values During Reset, After Reset, and During POS, see the Suspend/Resume
		and Resume Control Signaling section.
FERR#	I	NUMERIC COPROCESSOR ERROR. This pin functions as a FERR# signal supporting
	1	coprocessor errors. This signal is tied to the coprocessor error signal on the CPU. If
		FERR# is asserted, PIIX4 generates an internal IRQ13 to its interrupt controller unit.
		PIIX4 then asserts the INT output to the CPU. FERR# is also used to gate the IGNNE#
GL D#		signal to ensure that IGNNE# is not asserted to the CPU unless FERR# is active.
SLP#	OD OD	SLEEP. This signal is output to the Pentium II processor in order to put it into Sleep
	1	state. For Pentium processor it is a No Connect.
	1	

5.2 INTEL 82371EB PCI-TO-ISA / IDE XCELERATOR (PIIX4) (5).

SIGNAL	TYPE	DESCRIPTION	SI
IGNNE#	OD	IGNORE NUMERIC EXCEPTION. This signal is connected to the ignore numeric	CL
		exception pin on the CPU. IGNNE# is only used if the PIIX4 coprocessor error reporting	
		function is enabled. If FERR# is active, indicating a coprocessor error,	PC
		a write to the Coprocessor Error Register (F0h) causes the IGNNE# to be asserted.	
		IGNNE# remains asserted until FERR# is negated. If FERR# is not asserted when the	
1		Coprocessor Error Register is written, the IGNNE# signal is not asserted.	
XX 1300	0.0	During Reset: High-Z After Reset: High-Z During POS: High-Z	
INIT	OD	INITIALIZATION. INIT is asserted in response to any one of the following conditions.	os
		When the System Reset bit in the Reset Control Register is reset to 0 and the Reset	
1		CPU bit toggles from 0 to 1, PIIX4 initiates a soft reset by asserting INI1. PIIX4 also	SUS
		asserts INIT IT a Shut Down Special cycle is decoded on the PCI Bus, if the RCIN#	
		signal is asserted, or if a write occurs to Port 92n, bit 0. when asserted, INTT remains	
		asserted for approximately 64 PCI clocks before being negated.	
1		I his signal is active high for Pentium processor and active-low for Pentium II processor	SY
		as determined by CONFIGT Signal.	
		During Resat: Low After Resat: Low During BOS, Low	
		During Reset: Low After Reset: Low During FOS: Low	
		Fentum II Frocessor: During Deset: High After Deset: High During POS: High	
INTR	OD	CPU INTERRUPT INTR is driven by PIIX4 to signal the CPU that an interrupt request	DD
INTR	UD	is pending and needs to be serviced. It is asynchronous with respect to SVSCI K or	I'D.
		PCICLK and is always an output. The interrunt controller must be programmed following	
		PCIRST# to ensure that INTR is at a known state	
		During Reset: Low After Reset: Low During POS: Low	
NMI	OD	NON-MASKABLE INTERRUPT. NMI is used to force a nonmaskable interrupt to the	
		CPU. PIIX4 generates an NMI when either SERR# or IOCHK# is asserted, depending	PD
1		on how the NMI Status and Control Register is programmed. The CPU detects an NMI	1.5
		when it detects a rising edge on NMI. After the NMI interrupt routine processes the	
		interrupt, the NMI status bits in the NMI Status and Control Register are cleared by	
1		software. The NMI interrupt routine must read this register to determine the source of	
		the interrupt. The NMI is reset by setting the corresponding NMI source enable/disable	
1		bit in the NMI Status and Control Register. To enable NMI interrupts, the two NMI	PD
		enable/disable bits in the register must be set to 0, and the NMI mask bit in the NMI	
		Enable/Disable and Real Time Clock Address Register must be set to 0. Upon	
		PCIRST#, this signal is driven low.	
		During Reset: Low After Reset: Low During POS: Low	
SMI#	OD	SYSTEM MANAGEMENT INTERRUPT. SMI# is an active low synchronous output the	at
1		is asserted by PIIX4 in response to one of many enabled hardware or software events.	PD
		The CPU recognizes the falling edge of SMI# as the highest priority interrupt in the	
		system, with the exception of INIT, CPURST, and FLUSH.	
		During Reset: High-Z After Reset: High-Z During POS: High-Z	
STPCLK#	OD	STOP CLOCK. STPCLK# is an active low synchronous output that is asserted by PIIX4	
		in response to one of many hardware or software events. STPCLK# connects directly to	SD.
		the CPU and is synchronous to PCICLK.	
DECM	1/0	During Reset: High-Z After Reset: High-Z During POS: High-	
RICX1,	1/0	RIC CRYSTAL INPUTS: These connected directly to a 32.768-kHz crystal. External	
RTCX2		capacitors are required. These clock inputs are required even if the internal RTC is not	
		being usea.	
	1	1 1	1

SIGNAL	TYPE	DESCRIPTION
CLK48	Ι	48-MHZ CLOCK. 48-MHz clock used by the internal USB host controller. This signal may be stopped during suspend modes.
PCICLK	I	FREE-RUNNING PCI CLOCK. A clock signal running at 30 or 33 MHz, PCICLK provides timing for all transactions on the PCI Bus. All other PCI signals are sampled on the rising edge of PCICLK, and all timing parameters are defined with respect to this edge. Because many of the circuits in PIIX4 run off the PCI clock, this signal MUST be kept active, even if the PCI bus clock is not active.
OSC	Ι	14.31818-MHZ CLOCK. Clock signal used by the internal 8254 timer. This clock signal may be stopped during suspend modes.
SUSCLK	0	SUSPEND CLOCK. 32.768-kHz output clock provided to the Host-to-PCI bridge used for maintenance of DRAM refresh. This signal is stopped during Suspend-to-Disk and Soft Off modes. For values During Reset, After Reset, and During POS, see the Suspend/Resume and Resume Control Signaling section
SYSCLK	0	ISA SYSTEM CLOCK. SYSCLK is the reference clock for the ISA bus. It drives the IS bus directly. The SYSCLK is generated by dividing PCICLK by 4. The SYSCLK frequencies supported are 7.5 MHz and 8.33 MHz. For PCI accesses to the ISA bus, SYSCLK may be stretched low to synchronize BALE falling to the rising edge of SYSCLK. During Reset: Running After Reset: Running During POS: Low
PDA[2:0]	0	PRIMARY DISK ADDRESS [2:0]. These signals indicate which byte in either the ATA command block or control block is being addressed. If the IDE signals are configured for Primary and Secondary, these signals are connected to the corresponding signals on the Primary IDE connector. If the IDE signals are configured for Primary 0 and Primary 1, these signals are used for the Primary 0 connector.
PDCS1#	0	THIMATY DISK CHIP SELECT FOR 1F0H1F7H RANGE. For ATA command r block. If the IDE signals are configured for Primary and Secondary, this output signal is connected to the corresponding signal on the Primary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, this signal is used for the Primary Master connector. During Reset: High After Reset: High During POS: High
PDCS3#	0	PRIMARY DISK CHIP SELECT FOR 3F03F7 RANGE. For ATA control register If the IDE signals are configured for Primary and Secondary, this output signal is connected to the corresponding signal on the Primary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, this signal is used for the Primary Master connector. During Reset: High After Reset: High During POS: High
PDD[15:0]	I/O	PRIMARY DISK DATA[15:0]. These signals are used to transfer data to or from the ID device. If the IDE signals are configured for Primary and Secondary, these signals are connected to the corresponding signals on the Primary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, this signal is used for the Primary Master connector.
SDA[2:0]	0	SECONDARY DISK ADDRESS[2:0]. These signals indicate which byte in either the ATA command block or control block is being addressed. If the IDE signals are configured for Primary and Secondary, these signals are connected to the corresponding signals on the Secondary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, these signals are used for the Primary Slave connector.

14

5.2 INTEL 82371EB PCI-TO-ISA / IDE XCELERATOR (PIIX4) (6).

SIGNAL	TYPE	DESCRIPTION]	SIGNAL	TYPE	DESCRIPTION
PDDACK#	0	PRIMARY DMA ACKNOWLEDGE. This signal directly drives the IDE device DMAG signal. It is asserted by PIIX4 to indicate to IDE DMA slave devices that a given data transfer cycle (assertion of PDIOR# or PDIOW#) is a DMA data transfer cycle. This signal is used in conjunction with the PCI bus master IDE function. It is not associated with any AT compatible DMA channel. If the IDE signals are configured for Primary and Secondary, this signal is connected to	K#	SDCS1#	0	SECONDARY CHIP SELECT FOR 170H177H RANGE. For ATA command registe block. If the IDE signals are configured for Primary and Secondary, this output signal is connected to the corresponding signal on the Secondary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, these signals are used for the Primary Slave connector. During Reset: High After Reset: High During POS: High
		the corresponding signal on the Primary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, this signal is used for the Primary Master connector. During Reset: High After Reset: High During POS: High		SDCS3#	0	SECONDARY CHIP SELECT FOR 370H—-377H RANGE. For ATA control register block. If the IDE signals are configured for Primary and Secondary, this output signal is connected to the corresponding signal on the Secondary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, these signals
PDDREQ	Ι	PRIMARY DISK DMA REQUEST. This input signal is directly driven from the IDE device DMARQ signal. It is asserted by the IDE device to request a data transfer, and used in conjunction with the PCI bus master IDE function. It is not associated with any		SDD[15:0]	I/O	are used for the Primary Slave connector. During Reset: High After Reset: High During POS: High-Z SECONDARY DISK DATA [15:0]. These signals are used to transfer data to or from the
		AT compatible DMA channel. If the IDE signals are configured for Primary and Secondary, this signal is connected to the corresponding signal on the Primary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, this signal is				IDE device. If the IDE signals are configured for Primary and Secondary, these signals are connected to the corresponding signals on the Secondary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, these signals are used for the Primary Slave connector.
PDIOR#	0	used for the Primary Master connector. PRIMARY DISK IO READ. In normal IDE this is the command to the IDE device that may drive data onto the PDD[15:0] lines. Data is latched by PIIX4 on the negation edge of PDIOR#. The IDE device is selected either by the ATA register file chip selects (PDCS1#, PDCS3#) and the PDA[2:0] lines, or the IDE DMA slave arbitration signals (PDDACK#). In an Ultra DMA/33 read cycle, this signal is used as DMARDY# which is negated by the PIIX4 to pause Ultra DMA/33 transfers. In an Ultra DMA/33 write cycle, this signal is used as the STROBE signal, with the drive latching data on rising and falling edges of STROBE.	it.	SDDACK#	0	SECONDARY DMA ACKNOWLEDGE. This signal directly drives the IDE device DMACK# signal. It is asserted by PIIX4 to indicate to IDE DMA slave devices that a given data transfer cycle (assertion of SDIOR# or SDIOW#) is a DMA data transfer cycle. This signal is used in conjunction with the PCI bus master IDE function. It is not associated with any AT compatible DMA channel. If the IDE signals are configured for Primary and Secondary, this signal is connected to the corresponding signal on the Secondary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, these signals are used for the Primary Slave connector. During Reset: High After Reset: High During POS: High
		If the IDE signals are configured for Primary and Secondary, this signal is connected to the corresponding signal on the Primary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, this signal is used for the Primary Master connector.		SDDREQ	Ι	SECONDARY DISK DMA REQUEST. This input signal is directly driven from the IDE device DMARQ signal. It is asserted by the IDE device to request a data transfer, and used in conjunction with the PCI bus master IDE function. It is not associated with any AT compatible DMA channel
PDIOW#	0	PRIMARY DISK IO WRITE. In normal IDE mode, this is the command to the IDE dev that it may latch data from the PDD[15:0] lines. Data is latched by the IDE device on the negation edge of PDIOW#. The IDE device is selected either by the ATA register file chip selects (PDCS1#, PDCS3#) and the PDA[2:0] lines, or the IDE DMA slave arbitration signals (PDDACK#).	ice	SDIOR#	0	If the IDE signals are configured for Primary and Secondary, this signal is connected to the corresponding signal on the Secondary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, these signals are used for the Primary Slave connector. SECONDARY DISK IO READ. In normal IDE mode, this is the command to the IDE
		For Ultra DMA/33 mode, this signal is used as the STOP signal, which is used to terminate an Ultra DMA/33 transaction. If the IDE signals are configured for Primary and Secondary, this signal is connected to the corresponding signal on the Primary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, this signal is used for the Primary Master connector.	3			device that it may drive data onto the SDD[15:0] lines. Data is latched by the PIIX4 on the negation edge of SDIOR#. The IDE device is selected either by the ATA register file chip selects (SDCS1#, SDCS3#) and the SDA[2:0] lines, or the IDE DMA slave arbitration signals (SDDACK#). In an Ultra DMA/33 read cycle, this signal is used as DMARDY# which is negated by the PIIX4 to pause Ultra DMA/33 transfers. In an Ultra DMA/33 write cycle, this signal is
PIORDY		PRIMARY IO CHANNEL READY. In normal IDE mode, this input signal is directly driven by the corresponding IDE device IORDY signal. In an Ultra DMA/33 read cycle, this signal is used as STROBE, with the PIIX4 latching data on rising and falling edges of STROBE. In an Ultra DMA/33 write cycle, this signal is used as the DMARDY# signal which is negated by the drive to pause Ultra DMA/33 transfers.				used as the STROBE signal, with the drive latching data on rising and falling edges of STROBE. If the IDE signals are configured for Primary and Secondary, this signal is connected to the corresponding signal on the Secondary IDE connector. If the IDE signals are configured for Primary Master and Primary Slave, these signals are used for the Primary Slave connector.

5.2 INTEL 82371EB PCI-TO-ISA / IDE XCELERATOR (PIIX4) (7).

SIGNAL	ТҮРЕ	DESCRIPTION
SDIOW#	0	SECONDARY DISK IO WRITE. In normal IDE mode, this is the command to the IDE device that it may latch data from the SDD[15:0] lines. Data is latched by the IDE device on the negation edge of SDIOW#. The IDE device is selected either by the ATA register
		arbitration signals (SDDACK#).
		In read and write cycles this signal is used as the STOP signal, which is used to terminate an Ultra DMA/33 transaction.
		If the IDE signals are configured for Primary and Secondary, this signal is connected to the corresponding signal on the Secondary IDE connector.
		If the IDE signals are configured for Primary Master and Primary Slave, these signals are used for the Primary Slave connector.
		During Reset: High After Reset: High During POS: High
SIORDY	Ι	SECONDARY IO CHANNEL READY. In normal IDE mode, this input signal is direct driven by the corresponding IDE device IORDY signal
		In an Ultra DMA/33 read cycle, this signal is used as STROBE, with the PIIX4 latching data on rising and falling edges of STROBE. In an Ultra DMA write cycle, this signal is used as the DMARDY# signal which is negated by the drive to pause Ultra DMA/33
		transfers.
		If the IDE signals are configured for Primary and Secondary, this signal is connected to
		If the IDE signals are configured for Primary Master and Primary Slave, these signals
		are used for the Primary Slave connector
		This is a Schmitt triggered input
OC[1:0]#	1	OVER CURRENT DETECT. These signals are used to monitor the status of the USB
		power supply lines. The corresponding USB port is disabled when its over current signal
		is asserted.
USBP0+,	I/O	SERIAL BUS PORT 0. This signal pair comprises the differential data signal for USB
USBP0		port 0.
USBP1+,	I/O	SERIAL BUS PORT 1. This signal pair comprises the differential data signal for USB
USBP1	Ť	port 1.
BATLOW#/	1	BATTERY LOW. Indicates that battery power is low. PIIX4 can be programmed to
GPI9		prevent a resume operation when the BATLOW# signal is asserted.
		in the Battery Low function is not needed, this pin can be used as a general-purpose
CPU STP#/	0	CPU CLOCK STOP Active low control signal to the clock generator used to disable
GP017		the CPU clock outputs. If this function is not needed, then this signal can be used as
01017		a general-purpose output.
		For values During Reset , After Reset , and During POS , see the <i>Suspend/Resume</i>
		and Resume Control Signaling section.
EXTSMI#	I/OD	EXTERNAL SYSTEM MANAGEMENT INTERRUPT. EXTSMI# is a falling edge
		triggered input to PIIX4 indicating that an external device is requesting the system to
		enter SMM mode. When enabled, a falling edge on EXTSMI# results in the assertion
		of the SMI# signal to the CPU. EXTSMI# is an asynchronous input to PIIX4.
		However, when the setup and hold times are met, it is only required to be asserted
		for one PCICLK. Once negated EXTSMI# must remain negated for at least four
		PUICLKS to allow the edge detect logic to reset. EXTSMI# is asserted by PIIX4 in
		should be placed on this signal.
1	1	

SIGNAL	TYPE	DESCRIPTION
LID/	I	LID INPUT. This signal can be used to monitor the opening and closing of the
GPI10		display lid of a notebook computer. It can be used to detect both low to high
		transition or a high to low transition and these transitions will generate an SMI# if
		enabled. This input contains logic to perform a 16-ms debounce of the input signal. If
		the LID function is not needed, this pin can be used as a general-purpose input.
PCIREQ[A:D]#	1	PCI REQUEST. Power Management input signals used to monitor PCI Master
		Requests for use of the PCI bus. They are connected to the corresponding
DOL OTDU	0	REQ[0:3]# signals on the Host Bridge.
PCI_STP#/	0	PCI CLOCK STOP. Active low control signal to the clock generator used to disable
GPO18		the PCI clock outputs. The PIIX4 free running PCICLK input must remain on. If this
		function is not needed, this pin can be used as a general-purpose output.
		For values During Reset, After Reset, and During POS, see the Suspend/Resume
DWDDTN#	т	and Resume Control Signaling Section.
PWKBIN#	1	POWER BUTTON. Input used by power management logic to monitor external
		system events, most typically a system on/off button of switch. This input contains
DI#	т	DISC to perform a 10-ms debounce of the input signal.
CPI12	1	KING INDICATE. Input used by power management logic to monitor external system events, most typically used for wake up from a moder. If this function is not
GF112		system events, most typicarly used for wake up from a modern. If this function is not
DSMDST#	т	DESUME DESET . This signal resets the internal Suspand Well never plane logic
KSWIKS1#	1	and portions of the RTC well logic
SMBALERT#/	T	SM BUS ALERT Input used by System Management Bus logic to generate an
GPI11	1	interrupt (IRO or SMI) or nower management resume event when enabled If this
01111		function is not needed, this pin can be used as a general-nurpose input
SMBCLK	I/O	SM BUS CLOCK System Management Bus Clock used to synchronize transfer of
SINDELIK	1/ 0	data on SMBus
		During Reset: High-Z After Reset: High-Z During POS: High-Z
SMBDATA	I/O	SM BUS DATA. Serial data line used to transfer data on SMBus
		During Reset: High-Z After Reset: High-Z During POS: High-Z
SUSA#	0	SUSPEND PLANE A CONTROL. Control signal asserted during power
		management suspend states. SUSA# is primarily used to control the primary power
		plane. This signal is asserted during POS, STR, and STD suspend states.
		During Reset: Low After Reset: High During POS: Low
SUSB#/	0	SUSPEND PLANE B CONTROL. Control signal asserted during power
GPO15		management suspend states. SUSB# is primarily used to control the secondary
		power plane. This signal is asserted during STR and STD suspend states. If the
		power plane control is not needed, this pin can be used as a general-purpose output.
		During Reset: Low After Reset: High During POS: High/GPO
SUSC#/	0	SUSPEND PLANE C CONTROL. Control signal asserted during power
GPO16		management suspend states, primarily used to control the tertiary power plane.
		It is asserted only during STD suspend state. If the power plane control is not
		needed, this pin can be used as a general-purpose output.
		During Reset: Low After Reset: High During POS: High/GPO
SUS_STAT1#/	0	SUSPEND STATUS 1. This signal is typically connected to the Host-to-PCI bridge
GPO20		and is used to provide information on host clock status. SUS_STAST1# is asserted
		when the system may stop the host clock, such as Stop Clock or during POS, STR,
		and STD suspend states. If this function is not needed, this pin can be used as a
		general-purpose output.

5.2 INTEL 82371EB PCI-TO-ISA / IDE XCELERATOR (PIIX4) (8).

SIGNAL	TYPE	DESCRIPTION
SUS_STAT2#/	0	SUSPEND STATUS 2. This signal will typically connect to other system peripherals
GPO21		and is used to provide information on system suspend state. It is asserted during
		POS, STR, and STD suspend states. If this function is not needed, this pin can be
		used as a general-purpose output.
THD		During Reset: Low After Reset: High During POS: Low/GPO
THRM#/	1	THERMAL DETECT. Active low signal generated by external hardware to start the
GP18		Hardware Clock Infoluing mode. If enabled, the external hardware can force the
		system to enter into Hardware Clock Infotue mode by asserting THRM#. This
		causes PIIX4 to cycle SIPCLK# at a preset programmable rate. If this function is not
77/	0	LOW POWED MODE FOR L2 CACHE SDAM This signal is used to power down of
CPO10	0	LOW-FOWER MODE FOR L2 CACHE SKAWI. This signal is used to power down a
GPU19		If this function is not needed, this nin can be used as a general nurness output
		During Deset: Low After Deset: Low During POS: Low
CDI[21:0]	T	CENEDAL DUDDOSE INDUTS These input signals can be monitored via the CDIDE
01[21.0]	1	register located in Eurotion 3 (Power Management) System IO Space at address
		PMBase+30b See Table 1 for details
GPO[30:0]	0	CENERAL PURPOSE OUTPUTS These output signals can be controlled via the
010[50.0]		GPIREG register located in Function 3 (Power Management) System IO Space at
		address PMBase+34h
		If a GPO nin is not multiplexed with another signal or defaults to GPO, then its state
		after reset is the reset condition of the GPOREG register. If the GPO defaults to another
		signal then it defaults to that signal state after reset
		The GPO ning that default to GPO remain stable after reset. The others may toggle due
		to system boot or power control sequencing after reset prior to their being programmed
		as GPOs
		The GPO8 signal is driven low upon removal of power from the PUV4 core power
		plane. All other GPO signals are invalid (buffers powered off)
CONFIG1	T	CONFICURATION SELECT 1 This input signal is used to select the type of
control	1	microprocessor being used in the system If CONFIG1=0, the system contains a
		Pentium microprocessor If CONFIG1=1, the system contains a Pentium II
		microprocessor. It is used to control the polarity of INIT and CPURST signals
CONFIG2	T	CONFIGURATION SELECT 2 This input signal is used to select the positive or
0011102	1	subtractive decode of FFFF0000h FFFFFFFh memory address range (top 64 Kbytes)
		If CONFIG[2]=0, the PIIX4 will positively decode this range. If CONFIG[2]=1, the
		PIIX4 will decode this range with subtractive decode timings only. The input value of
		this pin must be static and may not dynamically change during system operations.
PWROK	Ι	POWER OK. When asserted, PWROK is an indication to PIIX4 that power and PCICL
		have been stable for at least 1 ms. PWROK can be driven asynchronously. When
		PWROK is negated, PIIX4 asserts CPURST, PCIRST# and RSTDRV. When PWROK
		is driven active (high), PIIX4 negates CPURST, PCIRST#, and RSTDRV.
SPKR	0	SPEAKER. The SPKR signal is the output of counter timer 2 and is internally "ANDed
		with Port 061h bit 1 to provide the Speaker Data Enable. This signal drives an external
		speaker driver device, which in turn drives the ISA system speaker.
		During Reset: Low After Reset: Low During POS: Last State
		TEST# I TEST MODE SELECT. The test signal is used to select various test modes of
		PIIX4. This signal must be pulled up to VCC(SUS) for normal operation.
		C

SIGNAL	TYPE	DESCRIPTION
VCC	v	CORE VOLTAGE SUPPLY. These pins are the primary voltage supply for the PIIX4 core and IO periphery and must be tied to 3.3V.
VCC (RTC)	V	RTC WELL VOLTAGE SUPPLY. This pin is the supply voltage for the RTC logic and must be tied to 3.3V.
VCC (SUS)	V	SUSPEND WELL VOLTAGE SUPPLY. These pins are the primary voltage supply for the PIIX4 suspend logic and IO signals and must be tied to 3.3V.
VCC (USB)	V	USB VOLTAGE SUPPLY. This pin is the supply voltage for the USB input/output buffers and must be tied to 3.3V.
VREF	V	VOLTAGE REFERENCE. This pin is used to provide a 5V reference voltage for 5V safe input buffers. VREF must be tied to 5V in a system requiring 5V tolerance. In a 5V tolerant system, this signal must power up before or simultaneous to VCC. It must power down after or simultaneous to VCC. In a non-5V tolerant system (3.3V only), this signal can be tied directly to VCC. There are then no sequencing requirements.
VSS	V	CORE GROUND. These pins are the primary ground for PIIX4.
VSS (USB)	V	USB GROUND. This pin is the ground for the USB input/output buffers.

6. MAJOR CHIP DESCRIPTION

6.1 SYSTEM CONTROLLER: INTEL 82439TX (MTXC)

- HOST BRIDGE (NORTH BRIDGE) FOR TRANSLATION FROM CPU BUS CYCLE TO PCI BUS CYCLE
- DRAM MEMORY CONTROLLER
 - ~64-BIT DATA WIDTH
 - ~ SUPPORTS FPM, EDO, SDRAM
 - ~ SUPPORTS 64M BIT EDO (MA[0...11]) AND SYNCHRONOUS (MA[0...13]) DRAM ORGANIZATION
 - ~ MIXING INSTALLATION OF ANY TYPE OF DRAM
 - ~ AUTO DETECTION OF DRAM TYPE
- LEVEL 2 CACHE CONTROLLER
 - ~ DIRECT MAPPED WITH WRITE-BACK ALGORITHM
 - ~ SUPPORT BOTH 256K AND 512K CONFIGURATION
- TWO UNIVER DATAPATH AND BUFFERS
 - ~ 5 QWORD BUFFER FOR CPU TO DRAM, L2 CACHE WRITE-BACK AND PCI-TO-DRAM TRANSFERS
 - ~ 5 QWORD BUFFER FOR CPU-TO-PCI WRITES
 - ~ 5 QWORD PREFETCHING BUFFER FOR PCI-TO-DRAM READ PATH
 - ~ 18 D WORD BUFFER FOR PCI-TO-DRAM WRITES

BUS ARBITER

~ SUPPORTS 5 PCI BUS MASTERS (4 GENERAL BUS MASTER + PIIX4)

6.2 INTEL 82371EB PCI-TO-ISA / IDE XCELERATOR (PIIX4E)

MULTI FUNCTION PCI DEVICES

 \sim PCI-TO-ISA/EIO BRIDGE FOR PASSING THE CYCLES ACCESSING ISA

~ PCI IDE WITH ULTRA DMA/33 SUPPORT

~ UNIVERSAL SERIAL BUS PORT

~ ENHANCED POWER MANAGEMENT

~ COMMON I/O FUNCTIONS

• PCI IDE CONTROLLER

~ SUPPORT 2 CHANNELS WITH 4 DEVICES

~ PIO MODE 4 TRANSFERS UP TO 14MBPS

~ SUPPORTS BUS MASTER IDE

~ ULTRA DMA/33 TRANSFERS UP TO 33MBS

 $\sim 8 * 32$ BIT BUFFER FOR PCI IDE BURST TRNASFERS

USB

~ SUPPORTS LEGACY KEYBOARD AND MOUSE

~ UNIVERSAL HOST CONTROLLER INTERFACE (UHCI) REVISION 1.1 INTERFACE

ENHANCED POWER MANAGEMENT

~ GLOBAL AND LOCAL DEVICE (14 DEVICES) MANAGEMENT & SUPPORT ACPI

~ FULL CLOCK CONTROL: CLOCK THROTTLING, STOP CLOCK

~ DIFFERENT DEPTH OF SUSPEND: POWER ON SUSPEND (POS), SUSPEND TO DRAM (STR), SUSPEND TO DISK (STD)

~ SYSTEM MANAGEMENT MODE (SMM) SUPPORT

● ISA/EIO INTERFACE AND COMMON I/O DEVICES

~ CAN BE CONFIGURED AS FULL ISA OR SUBSET OF FULL ISA (EXTENDED I/O)

~ TWO 8237 DMA CONTROLLER, TWO 8259 INTERRUPT CONTROLLER, ONE 8254 TIMER, ONE MC146818A COMPATIBLE REAL-TIME CLOCK (RTC)

7. SYSTEM VIEW AND DISASSEMBLY

7.1 System View

- 7.1.1 Right-Side view
 - 1. CD-ROM Drive
 - 2. IR Port

7.1.2 Left-Side View

- 1. **Phone Line Connector** (optional)
- 2. Kensington Lock Anchor
- 3. PC Card Slots
- 4. Floppy Disk Drive

7.1 System View

7.1.3 Rear View

- 1. Power Connector
- 2. PS/2 Mouse/Keyboard Port
- 3. USB Port
- 4. Expansion Connector
- 5. Serial Port
- 6. S-Video Output Connector
- 7. Parallel Port
- 8. VGA Port

7.1.4 Front View

- 1. Top Cover Latch
- 2. Microphone Connector
- 3. Audio Output Connector

7.1 System View

7.1.5 Bottom View

- 1. Battery Pack
- 2. Ventilation Openings
- 3. SO-DIMM Compartment Cover
- 4. CMOS Battery Compartment Cover

Figure 7-5. Bottom View

7.1.6 Top-Open View

To open the cover, press the cover latch toward the right and lift the cover.

- 1. Microphone
- 2. LCD Display
- 3. Suspend Button
- 4. Stereo Speaker Set
- 5. Keyboard
- 6. Device Indicators
- 7. Touchpad
- 8. **Power Button**
- 9. System Indicators

7.2 System Disassembly

The section discusses at length each major component for disassembly/reassembly and show corresponding illustrations. Use the chart below to determine the disassembly sequence for removing components from the notebook.

7.2 System Disassembly

- 7.2.1 Battery Pack
 - Disassembly
 - 1. Place the notebook upside down.
 - 2. First push away the locking latches and then lift the battery pack out of the compartment.

Reassembly

. Fit the battery pack into the compartment. Make sure the

locking latches are in the locked position. (Refer to Figure 7-7 earlier.)

7.2 System Disassembly

7 .2.2 CD-ROM Drive

- 1. Place the notebook upside down.
- 2. Remove the battery pack. (Refer to Figure 7-7 earlier.)
- 3. Remove the CD-ROM drive connector cover by removing one screw and pushing the cover outward.
- 4. Unplug the cable from the system board
- 5. Remove the CD-ROM drive by sliding it out of the compartment.

Figure 7-8. Removing the CD-ROM Drive Connector Cover

Figure 7-10. Removing the CD-ROM Drive

7.2 System Disassembly

Reassembly

- 1. Remove the battery pack. (Refer to Figure 7-7 earlier.)
- Remove the CD-ROM drive connector cover. (Refer to Figure 7-8 earlier.)
- 3. Connect one end of the CD-ROM drive cable to the CD-ROM drive.
- 4 Slide the CD-ROM drive into the compartment. (Refer to Figure 7-10 earlier.)
- Connect the CD-ROM drive cable to the system board. (Refer to Figure 7-9 earlier.)
- 6. Replace the CD-ROM drive connector cover and secure the cover with one screw. (Refer to Figure 7-8 earlier.)

7.2.3 SO-DIMM

- 1. Remove one screw and push upward to open the compartment cover.
- 2. Pull the retaining clips outwards and remove the SO-DIMM.

7.2 System Disassembly

Reassembly

- To install the SO-DIMM, align the SO-DIMM 's notched end with the socket 's corresponding end and firmly insert the SO-DIMM into the socket at an angle. Then push down until the retaining clips lock the SO-DIMM into position. (Refer to Figure 7-12)
- Replace the compartment cover and secure with one screw. (Refer to Figure 7-11 earlier.)

7.2.4 CMOS Battery

- 1. Put the notebook upside down with care.
- 2. To access the CMOS battery, remove one screw and slide the compartment cover toward the left to open the cover.
- 3. Remove the battery by inserting a flat screw driver to push it out of the battery holder.

7.2 System Disassembly

Reassembly

- 1. Fit the CMOS battery into place. (Refer to Figure 7-14)
- Replace the battery cover and secure with one screw. (Refer to Figure 7-13 earlier.)

7.2.5 LCD Assembly

- 1. Open the top cover and remove the two hinge covers.
- 2. Slightly move the speaker panel downward and lift it up.
- Remove the four screws fastening the LCD display with the hinges. Then remove the wire cover and unplug the LCD cable connecting to the system board. Now you can separate the LCD assembly from the base unit.

Reassembly

1. Replace four screws, reconnect the LCD cable connectors to the system board and replace the wire cover. (Refer to Figure7-17)

7.2 System Disassembly

- 2. Replace the speaker panel. (Refer to Figure 7-16)
- 3. Replace the hinge covers. (Refer to Figure7-15)

Figure 7-16. Removing the Speaker Panel

ഹ

Figure 7-15. Removing the Hinge Covers

7.2 System Disassembly

2.2.6 LCD Panel

- 1. Open the top cover.
- 2. Remove the four screws on the LCD panel. Now you can separate the LCD frame from the housing.
- 3. To remove the LCD, remove four screws and unplug the cables.

- Reconnect the cables to the LCD. Fit the LCD back into place and secure with four screws. (Refer to Figure 7-19)
- Fit the LCD frame back to the housing and secure with four screws. (Refer to Figure 7-18)

7.2 System Disassembly

7.2.7 LED Board

Disassembly

- 1. Detach the LCD frame. (See section 7.2.6 Disassembly.)
- 2. To remove the LED board at the bottom side of the LCD, remove two screws and unplug the connectors from the board.

- Reconnect the connectors. Fit the LED board back into place and secure with two screws. (Refer to Figure 7-20)
- Fit the LCD frame back to the housing and replace the four screws. (See section 7.2.6 Reassembly step 2.)

7.2 System Disassembly

7.2.8 Keyboard

Disassembly

- Open the top cover. Remove the two hinge covers and the speaker panel. (See section 7.2.5 Disassembly step 1 to 2.)
- 2. Remove three screws fastening the keyboard.

- Reconnect the keyboard cable and fit the keyboard back into place. (Refer to Figure 7-22)
- 2. Replace three screws. (Refer to Figure 7-21 earlier.)
- 3. Replace the speaker panel and the two hinge covers.(See section 7.2.5 Reassembly step 2 to 3.)

7.2 System Disassembly

7.2.9 CPU BOARD

Disassembly

- Open the top cover. Remove the two hinge covers and the speaker panel. (See section 7.2.5 Disassembly step 1 to 2.)
- 2. Remove the keyboard. (See section 7.2.8 Disassembly step 2 to 3.)
- 3. Remove four screws from the metal plate.

Slide the plate toward the right, then toward the speaker, and finally lift it up.

4. To remove the CPU board, slightly lift the CPU board out of the three screw nuts on the system board and unplug the connector.

- 1. Align the three holes on the CPU board with the three screw nuts on the system Board and plug the CPU board connector into the corresponding connector. (Refer to Figure 7-24)
- 2. Replace the metal plate and secure with four screws. (Refer to Figure 7-23)
- 3. Replace the keyboard and secure with three screws. (See section 7.2.8 Reassembly step 1 to 2.)

Figure 7-24. Removing the CPU Card

7.2 System Disassembly

4. Replace the speaker panel and the two hinge covers. (See section 7.2.5 Reassembly step 2 to 3.)

Figure 7-25. Removing the Fax/Modem/Voice Card

7.2.10 Fax/Modem/Voice Card

- Open the top cover. Remove the two hinge covers and the speaker panel. (See section 7.2.5 Disassembly step 1 to 2.)
- 2. Remove the keyboard. (See section 7.2.8 Disassembly step 2 to 3.)
- 3. Remove the metal plate. (See section 7.2.9 Disassembly step 3.)
- 4. Remove two screws and lift up the Fax/Modem/Voice Card to disconnect the connector from the system board

7.2 System Disassembly

Reassembly

- 1. Hold the Fax/Modem/Voice Card at an angle so that the phone line connector is pointed towards the opening on the notebook. Insert the phone line connector into the opening and press the other end to plug the other connector into the socket on the system board. Then, secure with two screws. (Refer to Figure 7-25 earlier.)
- 2. Replace the metal plate and secure with four screws. (See section 7.2.9 Reassembly step 2.)
- 3. Replace the keyboard and secure with three screws. (See section 7.2.8 Reassembly step 1 to 2.)
- 4. Replace the speaker panel and the two hinge covers. (See section 7.2.5 Reassembly step 2 to 3.)

7.2.11 Hard Disk Drive

- 1. Open the top cover. Remove the two hinge covers and the speaker panel. (See section 7.2.5 Disassembly step 1 to 2.)
- 2. Remove the keyboard. (See section 7.2.8 Disassembly step 2 to 3.)
- 3. Remove the metal plate. (See section 7.2.9 Disassembly step 3.)
- 4. Remove two screws fastening the hard disk drive bracket and unplug the cable connector.

7.2 System Disassembly

5. To separate the hard disk drive from the bracket, remove four side screws from the bracket.

- 1. Attach the bracket to the hard disk drive and secure with four screws on both sides. (Refer to Figure 7-27)
- 2. Plug the hard disk drive connector to the system board and secure the bracket in place with two screws. (Refer to Figure 7-26)
- Replace the metal plate and secure with four screws.
 (See section 7.2.9 Reassembly step 2.)
- 4. Replace the keyboard and secure with three screws.(See section 7.2.8 Reassembly step 1 to 2.)
- Replace the speaker panel and the two hinge covers. (See section 7.2.5 Reassembly step 2 to 3.)

7.2 System Disassembly

7.2.12 Touchpad Board

Disassembly

- Open the top cover. Remove the two hinge covers and the speaker panel. (See section 7.2.5 Disassembly step 1 to 2.)
- 2. Remove the keyboard. (See section 7.2.8 Disassembly step 2 to 3.)
- 3. Remove the metal plate. (See section 7.2.9 Disassembly step 3.)
- 4. Remove the LCD display. (See section 7.2.5 Disassembly.)
- 5. Place the notebook upside down with care.
- 6. Remove the battery pack. (See section7.2.1 Disassembly step 2.)
- 7. Remove eight screws on the bottom and three screws on the rear side which fix the surface frame with the bottom base.
- Place the notebook surface up. Unplug two speaker connectors and two touchpad cables connecting to the Audio/Charger board.
 Remove two screws fastening the surface frame with the system board.
- 9. Separate the surface frame from the main body of the notebook.
- 10. Place the surface frame upside down. Remove the four screws fastening the touchpad board and separate it from the surface frame.

Figure 7-29. Removing the Surface Frame Screws and Connectors

7.2 System Disassembly

- 1. Fit the touchpad board into position. Replace the four screws securing the touchpad board. (Refer to Figure 7-30 earlier.)
- Replace the surface frame. Reconnect touchpad cables and audio onnectors and replace the screws fastening the frame.
 (Refer to Figure 7-29 earlier.)
- Place the notebook upside down. Replace eleven screws fixing the surface frame with the bottom board. (Refer to Figure 7-28 earlier.)
- 4. Replace the battery pack. (See section 7.2.1 Reassembly.)
- Place the notebook surface up. Replace the LCD display. (See section 7.2.5 Reassembly.)
- 6. Replace the metal plate and secure with four screws.(See section 7.2.9 Reassembly step 2.)
- 7. Replace the keyboard and secure with three screws.(See section 7.2.8 Reassembly step 1 to 2.)
- Replace the speaker panel and the two hinge covers.
 (See section 7.2.5 Reassembly step 2 to 3.)

Figure 7-30. Removing the Four Screws Fastening the Touchpad Board

7.2 System Disassembly

7.2.13 System Board

Disassembly

- 1. Remove the battery pack. (See section 7.2.1.)
- 2. Remove the CD-ROM drive. (See section 7.2.2.)
- 3. Remove the LCD assembly. (See section 7.2.5.)
- 4. Remove the CPU card. (See section 7.2.9.)
- 5. Remove the Data/Fax/Modem card if it exists. (See section 7.2.10.)
- 6. Remove the hard disk drive. (See section 7.2.11.)
- 7. Remove the surface frame. (See section 7.2.12.)
- 8. Unplug the VGA board from the system board.
- 9. Remove one screw fastening the Audio/Charger board.
- 10. Unplug the Audio/Charger board from the system board
- 11. Remove four screws fastening the system board.
- Unplug the floppy disk drive cable from the floppy disk.
 Lift the system board free.

Figure 7-31. Removing VGA Board and Audio/Charger Board

Figure 7-32. Removing System Board Screws and Unplugging the Floppy Disk Drive Cable

7.2 System Disassembly

Reassembly

- 1. Fit the system board into place.
- 2. Connect the floppy disk drive cable to the floppy disk and secure the system board with four screws. (Refer to Figure 7-32 earlier.)
- 3. Replace the Audio/Charger board and secure with one screw.
- 4. Replace the VGA board by plugging the connector to the system board. (Refer to Figure 7-31 earlier.)
- 5. Replace the touchpad board and reconnect the audio connectors. (See section 7.2.12 Reassembly)
- 6. Replace the hard disk drive with its bracket by plugging the connector to the system board and securing with two screws. (See section 7.2.11 Reassembly.)
- 7. Fit the Fax/Modem/Voice Card (if exist) into place and secure with two screws. (See section 7.2.10 Reassembly.)
- 8. Replace the CPU card. (See section 7.2.9 Reassembly.)
- 9. Replace the metal plate and secure with four screws. (See section 7.2.9 Reassembly step 2.)
- 10. Replace the keyboard and secure with three screws. (See section 7.2.8 Reassembly step 1 to 2.)
- 11. Attach the LCD assembly to the base unit and secure with four screws. (See section 7.2.5 Reassembly)
- 12 Replace the speaker panel and the two hinge covers. (See section 7.2.5 Reassembly step 2 to 3.)
- 13. Replace the CD-ROM drive by sliding it into the compartment, plugging the connector, and secure with one bottom screw. (See section 7.2.2 Reassembly.)
- 14. Replace the battery pack. (See section 7.2.1 Reassembly.)

7.2 System Disassembly

7.2.14 Floppy Disk Drive

Disassembly

- 1. Remove the system board. (See section 7.2.13 Disassembly.)
- 2. Remove the floppy disk drive by removing one screw and lifting the rear end of the floppy disk drive.

Reassembly

- 1. Connect the floppy disk drive cable to the floppy disk drive and fit the floppy disk drive into place.
- 2. Secure the floppy disk with one screw. (Refer to Figure 7-33)
- 3. Replace the system board. (See section 7.2.13 Reassembly.)

8. MAINTENANCE DIAGNOSTICS

8.1 INTRODUCTION

EACH TIME THE COMPUTER IS TURNED ON, THE SYSTEM BIOS RUNS A SERIES OF INTERNAL CHECKS ON THE HARDWARE. THIS POWER-ON SELF TEST (POST) ALLOWS THE COMPUTER TO DETECT PROBLEMS AS EARLY AS THE POWER-ON STAGE. ERROR MESSAGES OF POST CAN ALERT YOU TO THE PROBLEMS OF YOUR COMPUTER.

IF AN ERROR IS DETECTED DURING THESE TESTS, YOU WILL SEE AN ERROR MESSAGE DISPLAYED ON THE SCREEN. IF THE ERROR OCCURS BEFORE THE DISPLAY IS INITIALIZED, THEN THE SCREEN CANNOT DISPLAY THE ERROR MESSAGE. ERROR CODES OR SYSTEM BEEPS ARE USED TO IDENTIFY A POST ERROR THAT OCCURS WHEN THE SCREEN IS NOT AVAILABLE.

THE VALUE FOR THE DIAGNOSTIC PORT (378H) IS WRITTEN AT THE BEGINNING OF THE TEST. THEREFORE, IF THE TEST FAILED, THE USER CAN DETERMINE WHERE THE PROBLEM OCCURRED BY READING THE LAST VALUE WRITTEN TO PORT 378H BY THE PIO DEBUG BOARD PLUG AT PIO PORT.

8.2 ERROR CODES

FOLLOWING IS A LIST OF ERROR CODES IN SEQUENCE DISPLAY ON THE PIO DEBUG BOARD.

CODE	BEEP	Description
00H		START OF BOOT LOADER SECQUENCE.
01H		DISABLE A20 THROUGH A20, NOT SEND.
02H	··_·	INITIALIZE CHIPSET OR BIOS NOT SHADOWED.
03H		PERFORM CONVENTIONAL RAM TEST WITH CROSSED-PATTERN R/W.
04H	·_··	MOVE BOOT LOADER TO THE RAM OR BIOS CHECKSUM BAD.
05H		START POINT OF EXECUTION OF BOOT LOADER IN RAM.
06H		PERFORM PNP INITIALIZATION FOR CRYSTAL AUDIO CHIP OR CHECK
		OVERRIDE OPTION, NOT SEND.
07H		SHADOW SYSTEM BIOS.
08H		CHECKSUM SYSTEM BIOS ROM, NOT SEND.
09H		PROCEED WITH NORMAL BOOT.
0AH		PROCEED WITH CRISIS BOOT.
0FH		NO RAM OR DRAM SIZING.
10H		INITIAL L1, L2 CACHE, MAKE STACK AND DIAGNOSE CMOS.
11H		TURN OFF FAST A20 FOR FOR POST. RESET GDTS, 8259S QUICKLY.
12H		SIGNAL POWER ON RESET AT CMOS.
13H		INITIALIZE THE CHIPSET, (SDRAM).***SOLUTION: TRY TO CLEAR CMOS***
14H		SEARCH FOR ISA BUS VGA ADAPTER.
15H		RESET COUNTER/TIMER 1.
16H		USER REGISTER CONFIG THROUGH CMOS.
18H		DISPATCH TO 1ST 64K RAM TEST.
19H		CHECKSUM THE ROM.
1AH		RESET PIC'S(8259).
1BH		INITIALIZE VIDEO ADAPTER(S).
1CH		INITIALIZE VIDEO (6845 REGS).
1DH		INITIALIZE COLOR ADAPTER.
1EH		INITIALIZE MONOCHROME ADAPTER.
1FH		TEST 8237A PAGE REGISTERS.
20H		PERFORM KEYBOARD SELF TEST.
21H		TEST & INITIALIZE KEYBOARD CONTROLLER.
22H		CHECK IF CMOS RAM VALID.
23H		TEST BATTER FAIL & CMOS X-SUM.
24H		TEST THE DMA CONTROLLER.
25H		INITIALIZE 8237A CONTROLLER.
26H		INITIALIZE INTERRUPT VECTORS TABLE.
27H		RAM QUICK SIZING.

CODE	DEEE	
CODE	BEEP	Description
28H		PROTECTED MODE ENTERED SAFELY.
29H		RAM TEST COMPLETED.
2AH		PROTECTED MODE EXIT SUCCESSFUL .
2BH		SET UP SHADOW.
2CH		PREPARE TO INITIALIZE VIDEO.
2DH		SEARCH FOR MONOCHROME ADAOTER.
2EH		SEARCH FOR COLOR ADAPTER, VGA INITIALIZE.
2FH		SIGN-ON MESSAGES DISPLAYED.
30H		SPECIAL INIT OF KEYBOARD CONTROLLER.
31H		TEST IF KEYBOARD PRESENT.
32H		TEST KEYBOARD INTERRUPT.
33H		TEST KEYBOARD COMMAND BYTE.
34H		TEST, BLANK AND COUNT ALL RAM.
35H		PROTECTED MODE ENTERED SAFELY(2).
36H		RAM TEST COMPLETED.
37H		PROTECTED MODE EXIT SUCCESSFUL .
38H		UPDATE KEYBOARD OUTPUT PORT TO DISABLE GATE OF A20.
39H		SET UP CACHE CONTROLLER.
3AH		TEST IF 18.2HZ PERIODIC WORKING.
3BH		INITIALIZE BIOS DATA AREA AT 40:0.
3CH		INITIALIZE THE HARDWARE INTERRUPT VECTOR.
3DH		SEARCH AND INIT THE MOUSE.
3EH		UPDATE NUMLOCK STATUS.
3FH		OEM INITIALIZATION OF COMM AND LPT PORTS.
40H		CONFIGURE THE COMM AND LPT PORTS.
41H		INITIALIZE THE FLOPPIES.
42H		INITIALIZE THE HARD DISK.
43H		INITIALIZE ADDITIONAL ROMS.
44H		OEM'S INIT OF POWER MANAGEMENT, (CHECK SMI).
45H		UPDATE NUMLOCK STATUS.
46H		TEST FOR COPROCESSOR INSTALLED.
47H		OEM FUNCTIONS BEFORE BOOT (PCMCIA, CARDBUSS).
48H		DISPATCH TO OPERATION SYSTEM BOOT.
49H		JUMP INTO BOOT STRAP CODE.
4AH		OEM'S INIT OF PM WITH USB.
FO~F1H		RMA TEST FAILED

43

8.3 PIO PORT (378H) DIAGNOSTIC TOOLS

8.3.1 PARTS USED:

LED * 8
 PIO CONNECTOR * 1

8.3.2 CIRCUIT:

9. TROUBLE SHOOTING

9.1 NO POWER

9.2 NO DISPLAY

9.3 VGA CONTROLLER FAILURE

9.4 LCD NO DISPLAY

9.5 EXTERNAL MONITOR NO DISPLAY

9.6 MEMORY TEST ERROR

9.7 KEYBOARD TEST ERROR

9.8 TRACK PAD/BALL TEST ERROR

9.9 DISKETTE DRIVE TEST ERROR

9.10 HARD DRIVE OR CD-ROM TEST ERROR

9.11 CMOS TEST ERROR

9.12 SIO PORT TEST ERROR

9.13 PIO PORT TEST ERROR

9.14 AUDIO DRIVE FAILURE

9.1 NO POWER

SYMPTOM:

WHEN THE POWER BUTTON IS PRESSED, NOTHING HAPPENS, POWER INDICATOR IS NOT LIGHT UP.

9.1 NO POWER

SYMPTOM:

WHEN THE POWER BUTTON IS PRESSED, NOTHING HAPPENS, POWER INDICATOR IS NOT LIGHT UP.

9.2 NO DISPLAY (SYSTEM FAILURE) SYMPTOM:

THERE IS NO DISPLAY ON BOTH LCD AND MONITOR AFTER POWER ON ALTHOUGH THE LCD AND MONITOR ARE KNOWN-GOOD.

9.2 NO DISPLAY (SYSTEM FAILURE) SYMPTOM:

THERE IS NO DISPLAY ON BOTH LCD AND MONITOR AFTER POWER ON ALTHOUGH THE LCD AND MONITOR ARE KNOWN-GOOD.

9.2 NO DISPLAY (SYSTEM FAILURE)

******CLOCK AND RESET CIRCUIT CHECKING******

9.3 VGA CONTROLLER FAILURE

SYMPTOM:

THERE IS NO DISPLAY ON BOTH LCD AND MONITOR AND THE PIO DEBUG BOARD SHOWS THE PORT **378H** ERROR CODE IS STOPPED AT **2CH OR** POWER-ON-SELF-TEST IS PASSED.

9.3 VGA CONTROLLER FAILURE

SYMPTOM:

THERE IS NO DISPLAY ON BOTH LCD AND MONITOR AND THE PIO DEBUG BOARD SHOWS THE PORT **378H** ERROR CODE IS STOPPED AT **2CH OR** POWER-ON-SELF-TEST IS PASSED.

9.4 LCD NO DISPLAY OR PICTURE ABNORMAL

SYMPTOM:

THE LCD SHOWS NOTHING OR ABNORMAL PICTURE, BUT IT IS OK FOR EXTERNAL MONITOR.

9.4 LCD NO DISPLAY OR PICTURE ABNORMAL

SYMPTOM:

THE LCD SHOWS NOTHING OR ABNORMAL PICTURE, BUT IT IS OK FOR EXTERNAL MONITOR.

9.5 EXTERNAL MONITOR NO DISPLAY OR COLOR ABNORMAL

SYMPTOM:

THE CRT MONITOR SHOWS NOTHING OR ABNORMAL COLOR, BUT IT IS OK FOR LCD.

9.5 EXTERNAL MONITOR NO DISPLAY OR COLOR ABNORMAL

SYMPTOM:

THE CRT MONITOR SHOWS NOTHING OR ABNORMAL COLOR, BUT IT IS OK FOR LCD.

9.6 MEMORY TEST ERROR

SYMPTOM:

PIO DEBUG BOARD SHOWS THE PORT **378H** ERROR CODE IS STOPPED AT **0FH** OR ERROR MESSAGE OF MEMORY FAILURE IS SHOWN.

9.6 MEMORY TEST ERROR

SYMPTOM:

PIO DEBUG BOARD SHOWS THE PORT **378H** ERROR CODE IS STOPPED AT **0FH** OR ERROR MESSAGE OF MEMORY FAILURE IS SHOWN.

9.7 KEYBOARD TEST ERROR (INCLUDING EXTERNAL KEYBOARD & PS/2 MOUSE)

SYMPTOM:

1. ERROR MESSAGE OF KEYBOARD FAILURE IS SHOWN OR ANY KEY DOESN ' T WORK.

2. PIO DEBUG BOARD SHOWS THE PORT 378H ERROR CODE IS STOPPED AT 20H OR 21H.

9.7 KEYBOARD TEST ERROR (INCLUDING EXTERNAL KEYBOARD & PS/2 MOUSE)

SYMPTOM:

- 1. ERROR MESSAGE OF KEYBOARD FAILURE IS SHOWN OR ANY KEY DOESN ' T WORK.
- 2. PIO DEBUG BOARD SHOWS THE PORT 378H ERROR CODE IS STOPPED AT 20H OR 21H.

9.8 TOUCH-PAD TEST ERROR

SYMPTOM: AN ERROR MESSAGE IS SHOWN WHEN THE TOUCH-PAD IS ENABLED.

9.8 TOUCH-PAD TEST ERROR

SYMPTOM:

AN ERROR MESSAGE IS SHOWN WHEN THE TOUCH-PAD IS ENABLED.

9.9 DISKETTE DRIVE TEST ERROR

SYMPTOM:

AN ERROR MESSAGE IS SHOWN WHILE LOADING DATA FROM DISK TO SYSTEM.

9.9 DISKETTE DRIVE TEST ERROR

SYMPTOM:

AN ERROR MESSAGE IS SHOWN WHILE LOADING DATA FROM DISK TO SYSTEM.

9.10 HARD DRIVE TEST ERROR

SYMPTOM:

EITHER AN ERROR MESSAGE IS SHOWN, OR THE DRIVE MOTOR SPINS NON-STOP, WHILE READING DATA FROM OR WRITING DATA TO HARD-DISK.

9.10 HARD DRIVE TEST ERROR

SYMPTOM:

EITHER AN ERROR MESSAGE IS SHOWN, OR THE DRIVE MOTOR SPINS NON-STOP, WHILE READING DATA FROM OR WRITING DATA TO HARD-DISK.

9.11 CMOS TEST ERROR

SYMPTOM:

1. ERROR CODE IS STOPEED AT 22H.

2. CMOS DATA LOST, OR INACCURATE SYSTEM TIME & DATE.

9.12 SIO PORT TEST ERROR

SYMPTON:

ERROR OCCURS WHEN A MOUSE OR OTHER I/O SERIAL DEVICE IS INSTALLED.

9.12 SIO PORT TEST ERROR

SYMPTON:

ERROR OCCURS WHEN A MOUSE OR OTHER I/O SERIAL DEVICE IS INSTALLED.

9.13 PIO PORT TEST ERROR

SYMPTON:

WHEN A PRINT COMMAND IS ISSUED, PRINTER PRINTS NOTHING OR GARBAGE.

9.13 PIO PORT TEST ERROR

SYMPTON:

WHEN A PRINT COMMAND IS ISSUED, PRINTER PRINTS NOTHING OR GARBAGE.

9.14 AUDIO DRIVE FAILURE

SYMPTON:

NO SOUND FROM SPEAKER AFTER AUDIO DRIVE IS INSTALLED OR NO SOUND FROM CD-ROM, MICROPHONE AND MODEM VOICE.

9.14 AUDIO DRIVE FAILURE

SYMPTON:

NO SOUND FROM SPEAKER AFTER AUDIO DRIVE IS INSTALLED OR NO SOUND FROM CD-ROM, MICROPHONE AND MODEM VOICE.

10. BOM TREE STRUCTURE

5036 BOM STRUCTURE (DETAIL)

PROJECT CODE: 738

REVISION:R03(08/01/98)

11. EXPLODED VIEWS

12. SPARE PARTS LIST(1)

PART_NO	DESCRIPTION	LOCATION	PART_NO	DESCRIPTION	LOCATION		
526266560010	NBX;5036/TSXA/XXA/XXX1/BXDB2		340665600012	COVER ASSY;I/O,5036			
413000020122	LCD;LT133X2-122,TFT,13.3",XGA,SA		340665600007	TOP CASE ASSY;5036			
416266560003	NB PLATFORM;TFT,SAMSUNG,13.3,503		340665600010	BOTTOM CASE ASSY;5036			
412219300010	PCB ASSY; D/A BD, ONLY SAMSUNG, 503		346665600004	INSULATOR; FDD, 5036			
421665600003	CABLE ASSY; BACKLIT TO M/B,5036		371102030301	SCREW;M2L3,FLT(+),NIB/NLK			
421665600006	CABLE ASSY;LCD-VGA 13.3" SAM,503		371103031201	SCREW;M3L12,K-HEAD(+),NIB/NLK			
421665600031	MICROPHONE ASSY;5036		341665600005	SPRING PLATE; LCD CABLE, 5036			
340665600002	BEZEL ASSY;LCD 13.3",5036		422665600001	FPC ASSY;FDD-M/B TEAC,5036			
340665600005	HOUSING ASSY;LCD 13.3" SAMSUNG,5		421665600051	FAN ASSY;5036			
342665600001	HINGE;LCD,R,5036		442110500007	TOUCH PAD MODULE;904251-0000,L65			
342665600002	HINGE;LCD,L,5036		346665600014	SHIELD;AUDIO PCB,5036			
345665600004	HOLDER; MICROPHONE, 5036		346665600015	MYLAR; DC-CONN, 5036			
345665600005	CUSHION;LCD BOTTOM,5036		345665600001	RUBBER FOOT;5036			
345665600006	CUSHION;LCD TOP,5036		370102631201	SPC-SCREW;M2.6L12,K-HEAD(+),NIB			
346665600002	INSULATOR; INV BD, 5036		370102010301	SPC-SCREW;M2L3,NIB,B-HD,727			
371103030501	SCREW;M3L5,K-HEAD(+),NIB/NLK		346665600016	MYLAR;TOUCH PAD,5036			
370102610602	SPC-SCREW;M2.6 L6,NIB,K-HD,727		346665600017	MYLAR;T/P SWITCH BD,5036			
370102020301	SPC-SCREW;M2L3,NIW,K-HEAD		377102650940	S-STANDOFF;M2.6DP4.3H9.4L4,NCG/N			
346665200015	FILM;LCD PROTECT,13.3",215*290,P		370102020301	SPC-SCREW;M2L3,NIW,K-HEAD			
523410290015	FD DRIVE;1.44M,3 MODE,FD-05HG-56		371102030601	SCREW;M2L6,K-HEAD(+),NIB/NLK			
342665600006	BRACKET;I/O,5036		421664900062	CABLE ASSY;ESD TOUCH PAD,5027			
344665600036	CAP;FAX/MODEM,5036		370102610602	SPC-SCREW;M2.6 L6,NIB,K-HD,727			
340665600013	PLATE ASSY;KEYBOARD,5036		370103010801	SPC-SCREW;M3L8,NIB,K-HD,727	2		
344665600029	COVER;CD-ROM,FPC CABLE,5036		345665600007	RUBBER FOOT;HDD CONN,5036			
344665600013	LENS;I/R,5036		411665600001	PWA;PWA-5036 MOTHER BD			
344665600033	KNOB;TOUCH PAD,5036		371102030801	SCREW;M2L8,FLT(+),NIB/NLK			
344665600008	COVER;CABLE,5036		378102050491	STANDOFF;M2H4.9,NCG			
344665600027	COVER;BIOS,5036		371102010601	SCREW;M2L6,FLT(+),NIW			
344665600010	COVER;HINGE,5036		29800000002	BATTERY HOLDER; FOR CR2032, BH-800	BT501		
344665600021	COVER;DRAM,5036		312271006350	EC;100U,25V,20%,RA,6.3*7,-40~10	PC10,13,11		
332300000114	CABLE;FFC,4P,T/P,SW,5036		312272206152	EC;220U,4V,M,RA,D8*5,OS-CON	PC3,19		
332300000113	CABLE;FFC,8P,T/P,5036		312273306151	EC;330U ,6.3V,20%,RA,D10,W/OS-CO	PC16,17		

12. SPARE PARTS LIST(2)

PART_NO	DESCRIPTION	LOCATION	PART_NO	DESCRIPTION	LOCATION			
313000020132	CHOKE;22UH/18.5T,.6D,55040,LIE	PL1	271071474301	RES;470K ,1/16W,5% ,0603,SMT	PR7,R65			
313001050040	XSFORMER;18U/17.5T/36.5T/.8D/.35	PL2	271071514301	RES;510K ,1/16W,5% ,0603,SMT	PR517			
331510080001	CON;RBN,MA,80P,.63MM,R/A	J8	271071562301	RES;5.6K ,1/16W,5% ,0603,SMT	R567,R1			
331720009004	CON;D,MA,9P,2.775,R/A	J6	271071564301	RES;560K ,1/16W,5% ,0603,SMT	R501,608			
331720015006	CON;D,FM,15P,2.29,R/A,3ROW	J4	271071682101	RES;6.8K,1/16W,1%,0603,SMT	R95			
331720025005	CON;D,FM,25P,2.775,R/A	J5	271071750101	RES;75 ,1/16W,1%,0603,SMT	R42,44,60,512,513			
331870004002	CON;MINI DIN,4P,R/A,W/GROUNDING	J14	271071909211	RES;90.9K,1/16W,1%,0603,SMT	PR516			
331870006011	CON;MINI DIN,6P,R/A,W/GROUNDING	J11	271611100301	RP;10*4 ,8P ,1/16W,5% ,0612,SMT	RP25-29,32-35			
331910003003	CON;POWER JACK, 3P, 16VDC/3A	J13	271611103301	RP;10K*4,8P,1/16W,5%,0612,SMT	RP38,45,501			
338530010005	BATTERY;LI,3V/220MAH,CR2032	BT501	271611220301	RP;22*4 ,8P ,1/16W,5% ,0612,SMГ	RP1,2,4-7,9-14			
411665600003	PWA;PWA-5036 SMT V0 MOTHER BD		271611222301	RP;2.2K*4,8P,1/16W,5%,0612,SMT	RP44			
271012000301	RES;0 ,1/8W,5%,1206,SMT	R535	271611472301	RP;4.7К*4,8Р,1/16W,5%,0612,SMГ	RP503,511			
271045107101	RES;.01 ,1W ,1% ,2512,SMT	PR509,511	271611820301	RP;82*4 ,8P ,1/16W,5% ,0612,SMГ	RP3			
271045257101	RES;.025,1W,1%,2512,SMT	PR503	271621102303	RP;1K*8 ,10P,1/16W,5%,1206,SMT	RP22,504			
271071000002	RES;0 ,1/16W,0603,SMT	R18,19,23	271621103303	RP;10K*8,10P,1/16W,5%,1206,SMT	RP8,16,36,506,15			
271071100302	RES;10 ,1/16W,5%,0603,SMT	R39,84,14,126	271621472303	RP;4.7K*8,10P,1/16W,5%,1206,SMT	RP18,19,24,30,31,39			
271071101301	RES;100 ,1/16W,5% ,0603,SMT	R101,82	271621473301	RP;47K*8 ,10P,1/16W,5% ,1206,SMT	RP37,40,17,20,21			
271071102302	RES;1K ,1/16W,5%,0603,SMT	R45,566,585,	272003104701	CAP;.1U ,CR,25V ,+80-20%,0805,Y	PC511			
271071103302	RES;10K ,1/16W,5%,0603,SMT	R30,33,61,	272002105701	CAP;1U ,CR,16V ,-20+80%,0805,SM	C60,79,86,PC508			
271071104101	RES;100K ,1/16W,1% ,0603,SMT	PR5,R26,37,63,81,	272012225702	CAP;2.2U,CR,16V,+80-20%,1206,Y	C27,33,37,543,562			
271071124311	RES;124K ,1/16W,1% ,0603,SMT	PR502,513	272012335701	CAP;3.3U,CR,16V,-20+80%,1206,S	C509			
271071105101	RES;1M ,1/16W,1%,0603,SMT	R75,118	272012475701	CAP;4.7U,CR,16V,+80-20%,1206,Y	C20,97,106,529,611			
271071153301	RES;15K ,1/16W,5%,0603,SMT	R7,8,11,16	272013105501	CAP;1U ,CR,25V ,+80-20%,1206,S	PC505			
271071204101	RES;200K ,1/16W,1% ,0603,SMT	PR9	272021106501	CAP;10U ,10V ,20%,1210,X7R,SMT	PC504,516,519			
271071221302	RES;22 ,1/16W,5%,0603,SMT	R9,10,62,77,539,	272043106501	CAP;10U ,CR,25V ,20%,1812,Y5U,S	PC512			
271071222302	RES;2.2K,1/16W,5%,0603,SMT	R587	272063226701	CAP;22U ,25V ,+80-20%,2220,Y5U,	C582,581			
271071270301	RES;27 ,1/16W,5%,0603,SMT	R5,R6	272073180401	CAP;18P ,CR,25V ,10%,0603,NPO,S	C29,76,623			
271071330302	RES;33 ,1/16W,5%,0603,SMT	R530,547-549,554,556	272075100401	CAP;10P ,50V ,10%,0603,COG,SMT	EC33,C553,554			
271071470301	RES;47 ,1/16W,5%,0603,SMT	R570,571,574,576	272072104702	CAP;.1U ,16V,+80-20%,0603,SMT	C6,PC7,C8-10,21,22			
271071471302	RES;470 ,1/16W,5%,0603,SMT	R80,99	272075101701	CAP;100P,50V,+80-20%,0603,SMT	EC30,C25,624			
271071472302	RES;4.7K,1/16W,5%,0603,SMT	R21,34,584,3,48	272075102701	CAP;1000P,50V,+80-20%,0603,SMT	PC1,EC22,519,C570			
271071473301	RES;47K ,1/16W,5%,0603,SMT	R41	272075103501	CAP;.01U,50V,20%,0603,SMT	EC24,C59,19,501,502			

12. SPARE PARTS LIST(3)

PART_NO	DESCRIPTION	LOCATION	PART_NO	DESCRIPTION	LOCATION			
272075104701	CAP;.1U ,50V,+80-20%,0603,SMT	PC4,502,506,507,	286303032001	IC;SB3032P,PWM CTLR,SO,16P	PU501			
272075181301	CAP;180P,50V,5%,0603,SMT	EC15,518,541,540	286303052001	IC;SB3052P,PWM CTRL,SSOP,28P	PU1			
272075221302	CAP;220P,50V,5%,0603,SMT	EC23,25	286317812001	IC;HA178L12UA,VOLT REGULATOR,SC-	PU502			
272075470401	CAP;47P ,50V ,10%,0603,COG,SMT	PC14	284504867001	IC;W48S67-02,SYSTEM CLOCK,SSOP,4	U509			
272075472701	CAP;4700P,50V,+80-20%,0603,SMT	C622	288031110001	FIR;IBM31T1100A,TRANSCE. MODULE,	U12			
272022106501	CAP;10U ,16V,20%,1210,Y5U,SMT	PC6,509,C41,100,506	288100032013	DIODE;BAS32L,VRRM75V,MELF,SOD-80	PD1-3			
273000010003	FERRITE CHIP;360HM/100MHZ,4332	L506,PL501-503	288100056001	DIODE;RLZ5.6B,ZENER,5.6V,5%,LL34	PD504			
273000110015	FERRITE CHIP;800HM/100MHZ,3216,3	L31,510,29,24,EL3	288100202001	DIODE; DAN202K, 80V, SWITCH, SMI	PD4,PD6			
273000130006	FERRITE CHIP;6000HM/100MHZ,2A,1	L18,19	288100212001	DIODE;DAN212K,80V,SWITCH,SOT23	D3,505,506,510			
273000130010	FERRITE CHIP;1300HM/100MHZ,1608,	EL1,2,4-8,501-504	288100701002	DIODE;BAV70LT1,70V,225MW,SOT-23	D5,518			
273000150002	FERRIET CHIP;1200HM/100MHZ,2012,	L501,502,511,	288101004024	DIODE;EC10QS04,RECT,40V,1A,CHIP,	PD501-503			
273000990012	INDUCTOR;10UH,CDRH127,SUMIDA,SMT	PL3	288104148001	DIODE;RLS4148,200MA,500MW,MELF,S	D502,515			
274011431404	XTAL;14.318MHZ,30PPM,32PF,SMT	X501	288200352001	TRANS;NDS352P,DMOS,TO-236AB	Q2,6,528			
274011600405	XTAL;16MHZ,30PPM,16PF,SMT	X502	288200144001	TRANS;DTC144WK,NPN,SMT	Q1,7,4,501,3			
274013276103	XTAL;32.768KHZ,30PPM,12.5PF,CM20	X1	288203904010	TRANS;MMBT3904L,NPN,Tr35NS,TO236	PQ4,Q5,506-508			
282074338401	IC;74CBT3384DBQ;QSWITCH,QSOP,24	U17	288204410001	TRANS;SI4410DY,N-MOSFET,.020HM,S	PQ2,3,501-504			
282574014004	IC;74AHC14,HEX INVERTER,TSSOP,14	U6	291000012006	CON;HDR,MA,10P*2,1MM,ST,SMT	J1			
282574032005	IC;74AHC32,QUAD 2-I/P OR,TSSOP,1	U18	291000011205	CON;HDR,FM,60P*2,.8MM,ST,SMT	J2			
282574164002	IC;74VHC164,SIPO REGISTER,TSSOP,	U10	291000015010	CON;HDR,FM,25P*2,.65MM,H3MM,ST,S	J16,505,3			
283766560001	IC;SDRAM,1M*16*4-100,TSOP,54P,50	U8,9,504,505	291000016012	CON;HDR,FM,30P*2,1.27MM,H4.2,ST,	J19			
284100430001	IC;FW82439TX,MTXC,CPU/PCI,BGA,32	U14	291000018301	CON;HDR,FM,83P,1.27MM,ST,SMT	J502,503			
284182371005	IC;FW82371EB,PIIX4E,PCI/ISA,BGA3	U1	291000142604	CON;FPC/FFC,26P,1MM,ST,SMT,MOLEX	J18			
284501220001	IC;PCI1220,PCI/CARDBUS,TQFP,208P	U5	291000410201	CON;WFR,MA,2P,1.25,ST,SMT/MB	J12,15,20			
284501968001	IC;ES1968S,AUDIO CHIP, TQFP, 100P	U510	291000410301	CON;WFR,MA,3P,1.25,ST,SMT/MB	J9			
481665600002	F/WASSY;KBDCTRL,5036	U511	24260000158	LABEL;10*10,BLANK,COMMON,HI-TEMP				
284583434001	IC;H8/F3434,KBD CTLR,TQFP,100P		283420402003	IC;FLASH,256K*8-120,5V,PLCC32,BT				
24260000145	LABEL;10*10,BLANK,COMMON		291000621448	DIMM SOCKET;144P,.8MM,H5.6,SMT	J501			
284597338001	IC;PC97338VJG,SUPER I/O,TQFP,100	U507	291000622802	DIMM SOCKET;280P,.6MM,FM,COPPER,	J17			
286200213002	IC;ADM213E,RS-232,+-15KVESD,SSOP	U7	297040105003	SW;PUSU BUTTON,SPST,12V/50MA,4P,	SW1			
286300809002	IC;MAX809,RESET CIRCUIT,2.9V,SOT	U15	271023918301	RES;9.1 ,1/4W,5%,1210,SMF	R46,47			
286302206001	IC, TPS2206, CARDBUS PWR CTLR, SSOP	U11	288100056003	DIODE;BAW56,70V,215MA,SOT-23	D501			

12. SPARE PARTS LIST(4)

PART_NO	DESCRIPTION	LOCATION	PART_NO	DESCRIPTION	LOCATION
271071103101	RES;10K ,1/16W,1%,0603,SMT	PR514	27107100002	RES;0 ,1/16W,0603,SMT	R10,14
274014915401	XTAL;49.152MHZ,50PPM,18PF,SMT	X503	271071100302	RES;10 ,1/16W,5%,0603,SMT	R6,518
288227002001	TRANS;2N7002LT1,N-CHANNEL FET	Q15,Q16,Q20	271071102302	RES;1K ,1/16W,5%,0603,SMT	R513,21
288202302001	TRANS;SI2302DS,N-MOSFET,SOT-23	Q13,11,518	271071103302	RES;10K ,1/16W,5%,0603,SMT	R4,5,17,506,503
273000500010	CHOKE COIL;500IHM/100MHZ,5036,SM	T1	271071105101	RES;1M ,1/16W,1%,0603,SMT	R509,2
295000010016	FUSE;NORMAL,6.5A/32VDC,3216,SMT	F2	271071113101	RES;11K ,1/16W,1%,0603,SMT	R508
295000010008	FUSE;1.1A,POLY SWITCH,SMT	F501,502,1,503	271071221302	RES;22 ,1/16W,5%,0603,SMT	R13,19,517,523
291000142002	CON;FPC/FFC,20P,1MM,ST,52610-209	J506	271071224301	RES;220K,1/16W,5%,0603,SMT	R505
272602107501	EC;100U,16V,M,6.3*5.5,-55+85'C,S	C504,505	271071330302	RES;33 ,1/16W,5%,0603,SMT	R512,514-515,28,29
272615470401	CP;47P*4 ,8P,50V ,10%,0612,NPO,	ECA14,15,12	271071680301	RES;68 ,1/16W,5%,0603,SMT	R526-527,516
272613103401	CP;.01U*4,8P,25V,10%,0612,X7R,	ECA13	271071750101	RES;75 ,1/16W,1%,0603,SMT	R7,8,18,20,22,23,26
272615101401	CP;100P*4,8P,50V,10%,0612,NPO,	ECA10,11,3	271611330301	RP;33*4 ,8P ,1/16W,5% ,0612,SMT	RP1-4
272615181401	CP;180P*4,8P,50V,10%,0612,NPO,	ECA501,502,503,504	272002105701	CAP;1U ,CR,16V ,-20+80%,0805,SM	C13,15,18,22-23,
272615221401	CP;220P*4,8P,50V,10%,0612,NPO,	ECA4,5	272022106501	CAP;10U ,16V,20%,1210,Y5U,SMT	C2,35,503,506,508,
282574008005	IC;74AHC08,QUAD 2-I/P AND,TSSOP,	U19	272012475701	CAP;4.7U,CR,16V,+80-20%,1206,Y	C38,534,535
271071226311	RES;226K,1/16W,1%,0603,SMT	PR6	272022106701	CAP;10U ,16V,+80-20%,1210,Y5V,S	C26,28,511
272075220701	CAP;22P ,50V ,+80-20%,0603,SMT	C605,609,626	272072104702	CAP;.1U ,16V,+80-20%,0603,SMT	C6,24,27,30,32,34,
288100073002	DIODE;SFPJ-73,DC2010,30V,3A,SMT	PD5	272073180401	CAP;18P ,CR,25V ,10%,0603,NPO,S	C5,12
271071184101	RES;180K,1/16W,1%,0603,SMT	R119	272075103702	CAP;.01U,50V,+80-20%,0603,SMT	C17,20,33,36,39,514
288202301001	TRANS;SI2301DS,P-MOSFET,SOT-23	Q533	273000010003	FERRITE CHIP;36OHM/100MHZ,4332	L1
286302951015	IC;LP2951ACM,VOLTAGE REGULATOR,S	U512	273000130012	FERRITE CHIP;70OHM/100MHZ,1608,S	L501,EL501,
273000150103	INDUCTOR;.82UH,150mA,2012,SMT	L513	273000150002	FERRIET CHIP;1200HM/100MHZ,2012,	1506,508
272073152401	CAP;1500P,CR,25V,10%,0603,X7R,S	C629	274011431405	XTAL;14.318MHZ,20PPM,18PF,SMT	X1
331000004007	CON;USB,MA,R/A,4P*1,3505-04NBT1S	J7	284500725001	IC;AD725,RGB TO NTSC/PAL,SO,16P	U501
371102030301	SCREW;M2L3,FLT(+),NIB/NLK		284502160001	IC;NM2160,VGA CTRL,TQFP,176P	UJ · · · ·
346665600005	INSULATOR; CARDBUS, 5036		284505330001	IC;PI5V330,WIDEBAND/VIDEO,QSOP,1	U5
34460000217	IC CARD CON PART;83P,H5.8MM,CARD		284507584001	IC;SN75LVDS84,LVDS18BIT,SSOP48,5	U4
225664300001	TAPE;INSULATION,AC04,5024		286501410001	IC;MK1410,NTSC/PAL CLOCK,SO,8P,S	U503
346665400032	WASHER; PCMCIA/CAR BOX, VENUS		288200144001	TRANS;DTC144WK,NPN,SMT	Q501
24260000195	LABEL, PENTIUM-BP, SYSTEMSOFT BIOS		288209410001	TRANS;SI9410DY,N-MOSFET,.040HM,S	Ql
411665600005	PWA;PWA-5036 VGA BD NMC4		288227002001	TRANS;2N7002LT1,N-CHANNEL FET	Q502

12. SPARE PARTS LIST(5)

291000011204 CON;HDR,MA,60P*2,.8MM,ST,SMT	J501	271071287311 RES;287K,1/16W,1%,0603,SMT	PR513
291000012101 CON;HDR,MA,21P,0.625MM,ST,SMT	J3	271071301311 RES;301K,1/16W,1%,0603,SMT	PR511
291000410203 CON;WFR,MA,2P,1.25MM,ST,SMT,HIRO	J2	271071333301 RES;33K ,1/16W,5%,0603,SMT	PR13,R17,28
297040105004 SW;PUSH BUTTON,4P,12VDC/50MA,TM0	SW1	271071471302 RES;470 ,1/16W,5%,0603,SMF	R16
271002000301 RES;0 ,1/10W,5%,0805,SMT	R511,522,525,L2	271071472302 RES;4.7K,1/16W,5%,0603,SMT	R36-38
286303480001 IC;LM3480, VOLTAGE REGULATOR, SOT-	U505	271071499111 RES;4.99K,1/16W,1%,0603,SMT	PR508,PR507
411665600014 PWA;PWA-5036 T/U V0B AUDIO CHAR		271071562311 RES;562K,1/16W,1%,0603,SMT	PR505.11
312271006350 EC;100U,25V,20%,RA,6.3*7,-40~10	PC510,511	271071593101 RES;59K ,1/16W,1%,0603,SMT	PR503
313000020132 CHOKE;22UH/18.5T,.6D,55040,LIE	PL502	271071682101 RES;6.8K,1/16W,1%,0603,SMT	R3,6,31
331030006006 CON;HDR,MA,6P*1,2.0,ST,GLD	J502	271071753101 RES;75K ,1/16W,1%,0603,SMT	PR515
331840005006 CON;STEREO JACK,5P,R/A,W9.1,MQJB	J504,503	271071887211 RES;88.7K,1/16W,1%,0603,SMT	PR502
271002472301 RES;4.7K,1/10W,5%,0805,SMT	PR512	271071976211 RES;97.6K,1/16W,1%,0603,SMT	PR9
271012000301 RES;0 ,1/8W,5%,1206,SMT	AL1	271611102301 RP;1K*4 ,8P,1/16W,5%,0612,SMT	RP1
271012278101 RES;2.7 ,1/8W,1%,1206,SMT	R12	272002105701 CAP,1U ,CR,16V ,-20+80%,0805,SM	C1-11,13,29,30
271045257101 RES;.025 ,1W ,1% ,2512,SMT	PR1	272012225702 CAP;2.2U,CR,16V,+80-20%,1206,Y	C28
271071000002 RES;0 ,1/16W,0603,SMT	R1,2,4,5,7,10,13	272022106701 CAP;10U ,16V,+80-20%,1210,Y5V,S	C14,18,23,27,31,PC5
271071101301 RES;100 ,1/16W,5%,0603,SMT	R501	272041226501 CAP;22U ,CR,10V ,20% 1812,X7R,S	C15,39
271071102102 RES;1K ,1/16W,1%,0603,SMT	PR2	272063226501 CAP;22U ,25V ,20%,2220,Y5U,SMT	PC9,14
271071103101 RES;10K ,1/16W,1%,0603,SMT	PR3,4,R18,23,24	272072104702 CAP;.1U ,16V,+80-20%,0603,SMT	PC8,10,11,C12,16,17
271071104101 RES;100K,1/16W,1%,0603,SMT	R32-35,PR5-7,12,510	272073180401 CAP;18P ,CR,25V ,10%,0603,NPO,S	C22,503
271071105101 RES;1M ,1/16W,1%,0603,SMT	PR10,14,15	272075100701 CAP;10P ,50V ,+80-20%,0603,SMT	PC2
271071121211 RES;12.1K,1/16W,1%,0603,SMT	PR8	272075101701 CAP;100P ,50V ,+80-20%,0603,SMT	EC2,PC3,EC3,PC13,C48
271071122301 RES;1.2K ,1/16W,5% ,0603 ,SMT	R8	272075102701 CAP;1000P,50V,+80-20%,0603,SMT	C19,20,36
271071131101 RES;130 ,1/16W,1%,0603,SMT	PR504	272075562401 CAP;5600P,CR,50V,10%,0603,X7R	PC4
271071153301 RES;15K ,1/16W,5%,0603,SMT	R25,26	272075103702 CAP;.01U,50V,+80-20%,0603,SMT	C41,42,501
271071154101 RES;150K,1/16W,1%,0603,SMT	PR506	272075104701 CAP;.1U ,50V,+80-20%,0603,SMT	PC1,6,7,12,16
271071203101 RES;20K ,1/16W,1%,0603,SMT	R22,19,PR509	272075390301 CAP;39P ,50V ,5% ,0603 ,NPO ,SMT	PC503
271071205311 RES;205K,1/16W,1%,0603,SMT	PR501	272075471401 CAP;470P ,50V,10%0603,SMГ	C40
271071221302 RES;22 ,1/16W,5%,0603,SMT	R11,504	272602227502 EC;220U,16V,M,6.3*7.7,-15+105',	C506,505
271071222302 RES;2.2K,1/16W,5%,0603,SMF	R29,9	272615470401 CP;47P*4 ,8P,50V,10%,0612,NPO,	ECA501
271071473301 RES;47K ,1/16W,5%,0603,SMF	R30	273000130006 FERRITE CHIP;600OHM/100MHZ,2A,1	L6,7,EL5-7,L501-3

12. SPARE PARTS LIST(6)

273000130010 FERRITE CHIP;130OHM/100MHZ,1608,	L1,504	370102010201 SPC-SCREW;M2L2,NIW,K-HD,727	
273000130013 FERRITE CHIP;30OHM/100MHZ,1608	PL1,2,3,EL1,2,L4	340665600003 BEZEL ASSY;CD-ROM TEAC,5036	
273000150013 FERRITE CHIP;1200HM/100MHZ,2012,	L2,5,PL501	346665600025 GASKET;FDD,5036	
284501918001 IC;ES1918,AC 97 CODE,TQFP,48P	U1	370103010401 SPC-SCREW;M3L4,K-HD(+),D5.2,NIW,	
286100102001 IC;TPA0102,AUDIO AMP,1.5W,TSSOP,	U3	412665600003 PCB ASSY;HDD CONN. BD,5036	
286100393004 IC;LMV393,DUAL COMPARTOR,SSOP,8P	PU2	370102010301 SPC-SCREW;M2L3,NIB,B-HD,727	
286101620001 IC;LT1620CS8,CURRENT SENSE AMP,S	PU1	346665600012 GASKET;HDD,5036	
286133078001 IC;MC33078D,LOW NOISE OP AMP.,SO	U2	345665600007 RUBBER FOOT; HDD CONN, 5036	
286300431004 IC;AIC431,.5%,ADJ SHUNT REG,SOT-	PQ5	340665600014 BRACKET ASSY;HDD,5036	
286301435001 IC;LTC1435CS,SW REG. CTRL,SO,16	PU501	221665120004 CARTON; AK/CARRYING BAG, N-B, 5031	
288100018002 DIODE; RLZ18B, ZENER, 18V, LL34, SMT	PD1	227665600001 END CAP;5036	
288100032013 DIODE; BAS32L, VRRM75V, MELF, SOD-80	PD501	222664820005 PE BAG; 310*450, T.08, PITCHING	
288100073002 DIODE;SFPJ-73,DC2010,30V,3A,SMT	PD502-504	220665600002 CARRYING BAG;N-B,5036	
288200144001 TRANS;DTC144WK,NPN,SMT	PQ4,501,502,Q1	221664750003 PARTITION;KEYBOARD,5026	
288204410001 TRANS;SI4410DY,N-MOSFET,.02OHM,S	PQ1,2	222664720004 PE BUBBLE BAG;KEYBOARD,5026	
288204435001 TRANS;SI4435DY,P-MOSFET,.035OHM,	PQ503	222663920008 PE BAG; 150*200, FRU, LP486	
288227002001 TRANS;2N7002LT1,N-CHANNEL FET	PQ6,3	222664220002 PE BAG; 150*50, FRU, RECYCLE, LEBOOK	
291000016011 CON;HDR,MA,30P*2,1.27MM,H6.8,ST,	J501	222600020049 PE BAG;50*70MM,W/SEAL,COMMON	
291000150403 CON;FPC/FFC,4P,1MM,R/A,SMT,MOLEX	J1	242600000157 LABEL;BAR CODE & S/N,13.5*75,COM	
291000150805 CON;FPC/FFC,8P,1MM,R/A,SMT,MOLEX	J3	221664950002 PARTITION;CARRYING BAG,5027	
294011200001 LED;GRN,H1.5,0805,PG1102W,SMT	D1-D4	242662300009 LABEL;25*10MM,3020F	
295000010016 FUSE;NORMAL,6.5A/32VDC,3216,SMT	PF501	242664400003 LABEL; WINDOWS 95,5023	
271071402211 RES;40.2K,1/16W,1%,0603,SMT	PR16	242665600001 LABEL;AGENCY-GLOBAL,5036	× R
273000150009 FERRITE CHIP;300HM/100MHZ,2012,S	L9	343664710002 NAMEPLATE;LOGO,1,5026,N-B	
312272205352 EC;22U ,25V,20%,RA,6.3*5,LSM,85	PC501	442665600002 BATT ASSY;14.8V/3.2AH,LI,TSB,503	
411665600008 PWA;PWA-5036 T/P SWITCH BD		442665500001 AC ADPT ASSY;5033	
291000140401 CON;FPC/FFC,4P,1MM,ST,NON-ZIF,SM	J1	340665600011 COVER ASSY;KEYBOARD,5036	
297040102002 SW;PUSH BUTTON,SPST,15V/20MA,H3.	SW1,SW2	523410295015 CD ROM DRIVE;24X,CD-224E-903,TEA	
342665600005 BRACKET;CD-ROM,TEAC,5036		222600050108 ENVELOPE; 3.5" FD, PVC, COMMON	
422665600002 FPC ASSY;CD-ROM TEAC,5036		242661900008 LABEL;3.5",EN,ALL COMMON	
346665600003 INSULATOR;CD ROM,5036		551103200013 FLOPPY DISKETTE; 3.5", 1.44MB, 2HD	
332810000033 PWR CORD; 125V/7A, 2P, BLACK, AMERIC		······	

13. SYSTEM BLOCK DIAGRAM & SCHEMATICS

13. SYSTEM BLOCK DIAGRAM & SCHEMATICS

MOTHER-BOARD AUDIO/CHARGER BOARD

VGA-BOARD

52	53	54	55	56	57	58 59	60	61	62	63 64	4 65	66	67	68	69	70	71	72	73	74
75	76	77	78	79	80	81 82	83	84	85	86 8'	7 88	89	90	91	92	93	94	95	96	
97	98	99	100	10	1 10	2 103	104	105	100	5 107	108	109	11	0 11	1	112	113	5		je J
114	115	5 1	16	117	118	119	120	121	122	123	124	125	125	127	128	8 1	29	130		

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

DC /DC BOARD

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

DC/DC BOARD

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

DC /DC BOARD

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

5036 N/B MAINTENANCE

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

DC /DC BOARD

5036 N/B MAINTENANCE

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

DC /DC BOARD

5036 N/B MAINTENANCE

13. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

DC /DC BOARD

