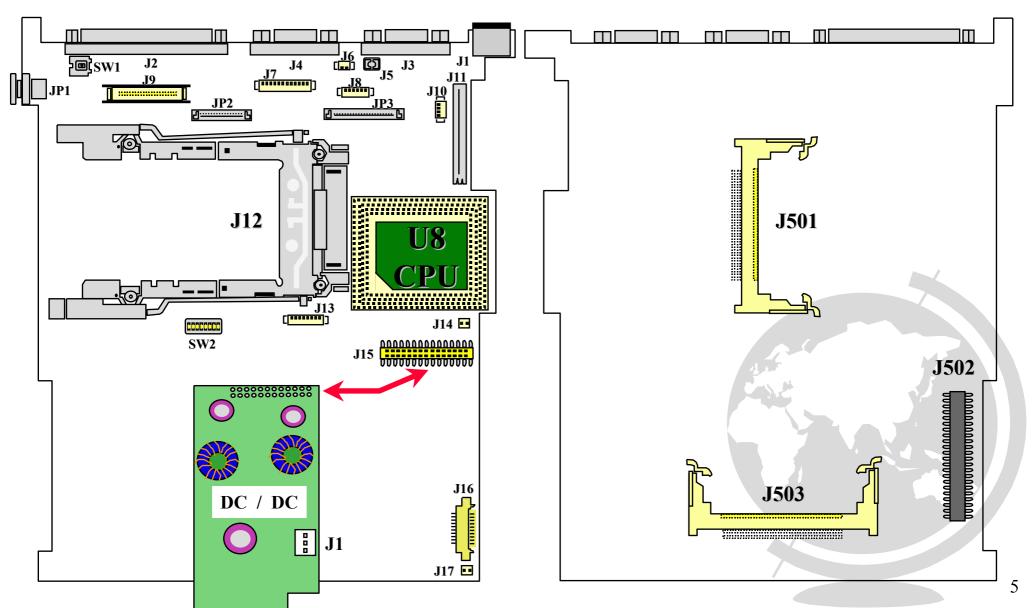

TROUBLE SHOOTING GUIDE FOR NOTEBOOK 5023

BY:

GEORGE FENG

TECHNICAL SUPPORT & SERVICE CENTER

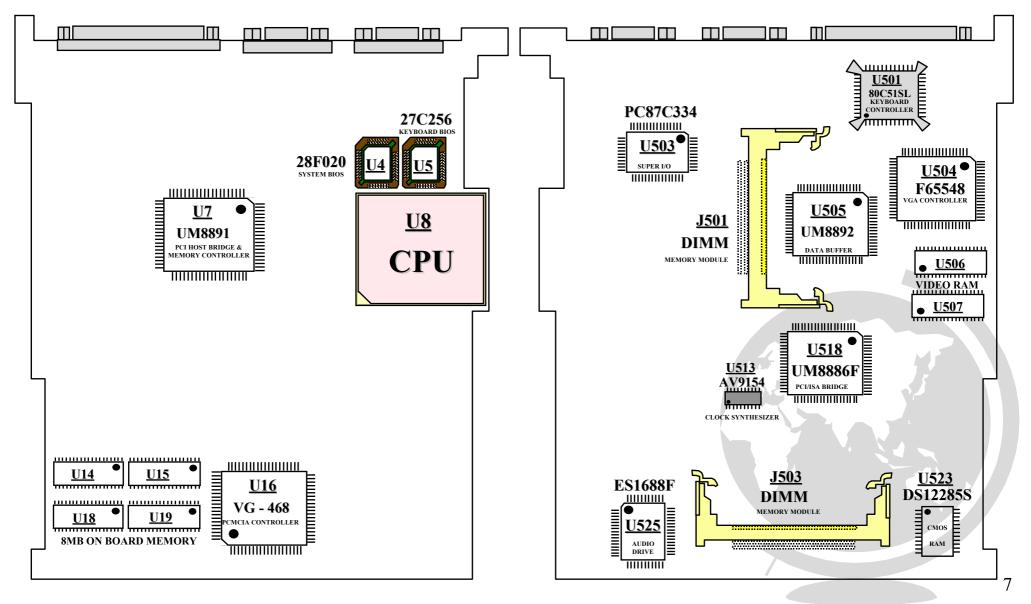
1.	DEFINITION OF CONNECTORS	
	& SWITCHES	4
2.	LOCATION OF SWITCHES &	
	CONNECTORS	5
3.	MAJOR COMPONENTS	6
4.	LOCATION OF MAJOR	
	COMPONENTS	7
5.	PIN DESCRIPTIONS OF MAJOR	
	CHIPS	8~18
6.	SWITCHES SETTING	19
7.	ASSEMBLY & DISASSEMBLY	20~33
8.	MAINTENANCE DIAGNOSTICS	34~37


9.	TROUBLE SHOOTING	38~70
10	. SYSTEM BLOCK DIAGRAM & SCHEMATICS	71~95
11	. EXPLODED VIEWS	96~98
12	. SPARE PARTS LIST	99~106

1. DEFINITION OF CONNECTORS & SWITCHES

J1 : PS/2 KEYBOARD & MOUSE CONNECTOR	J14 : SPEAKER CONNECTOR
J2 : PARALLEL PORT(PIO)	J15 : DC/DC TO BOARD CONNECTOR
J3 : SERIAL PORT (SIO)	J16 : AUDIO BOARD CONNECTOR
J4 : CRT VIDEO CONNECTOR	J17 : MICROPHONE CONNECTOR
J5 : SUSPEND / RESUME BUTTON	J501, J503 : MEMORY MODULE CONNECTOR
J6 : COVER SWITCH	J502 : HARD DISK CONNECTOR
J7 : ICON LCD MODULE CONNECTOR	JP1 : POWER JACK
J8 : BACKLIGHT CONNECTOR	JP2, JP3 : INTERNAL KEYBOARD CONNECTOR
J9 : LCD MODULE CONNECTOR	SW1 : POWER BUTTON
J10: SIR PORT	
J11: FLOPPY DRIVE CONNECTOR	DC /DC BOARD
J12: PCMCIA IC CARD CONNECTOR	
J13 : TOUCHPAD CONNECTOR	J1 : BATTERY CONNECTOR

2. LOCATION OF CONNECTORS & SWITCHES


3. MAJOR COMPONENTS

1. U8 PENTIUM PROCESSOR

- 2. U7 UM8891BE/CYS PCI BRIDGE & MEMORY/CACHE CONTROLLER
- 3. U509 UM8886BE/CYS PCI TO ISA BRIDGE
- 4. U505 UM8892BE/CYS DATA PATH CONTROLLER
- 5. U504 C&T 65548 VGA CONTROLLER
- 6. U503 NS PC87334 SUPER I/O CONTROLLER
- 7. U16 VADEM VG-468 PCMCIA CONTROLLER

- 8. U501 80C51 KEYBOARD CONTROLLER
- 9. J501, J503 OPTIONAL DIMM SOCKETS
- **10. U510 VG-468 PCMCIA CONTROLLER**
- 11. U14, U15, U18, U19 8MB ON BOARD MEMORY
- **12. U4 SYSTEM BIOS**
- 13. U5 KEYBOARD BIOS
 14. U514 AV9154 CLOCK GENERATOR
 15. U522 ESS1688 AUDIO CONTROLLER
 16. U523 DS12885 RTC CONTROLLER

4. LOCATION OF MAJOR COMPONENTS

5. PIN DESCRIPTIONS OF MAJOR COMPONENTS

5.1 PENTIUM MICROPROCESSOR (P54LM)

SYMBOL	TY PE	DESCRIPTION
A 20M #	I	w hen the address bit 20 mask pin is active, the 20 (A20)
		PENTIJNM M CORPROCESSOR MASKS PHYSICAL ADDRES BI
		BEFORE PERFORM ING A LOOKUP TO THE INTERNAL CACHE OR
		EM ULATES THE ADDRESS W RAPAROUND AT THE AM B
		DRIVING A MEMORY BUS CYCLE ONTO THE BUSES.A20M #
		BOUNDARY THAT OCCUS ON THE 8086,8088.
A31:A5	IO	A 31 A 3 COM PRISE THR PENTIUM E ,CROPROCESSOR S ADDRES
A4A3	0	BUS.
ADS#	IO	W HEN ACTIVE ,THE ADDRESS STATUS OUTPUT INDICCATES
		THAT A VALID BUS CYCLE DEFINITION AND ADDRESS ARE
		AVALABLE ON THE BUS CYCLE DEFINITION AND BUS LINES.
AHOLD	I	THE ADDRESS HOLD REQUEST INPUT ALLOW S ANOTHER BUS MAST-
		ER ACCESS TO PENTIUM MICROPROCESSOR S ADDRESS BUS FOR A
		CACHE INVALIDATION, BACK INVALIDATION, OR INQUIRE CYCLE.
AP	IO	THE PENTIUM PROCESS GENERATES ADDRESS PARITY DURING
		M EM ORY W RIFE OPERATIONS AND CHECK ADDRESS PARIFY
		DURING CACHE INVALIDATION CYCLES (ADDRESS BUS SNOOPING).
APCHK#	0	THE PENTIUM PROCESS ASSERTS THE ADDRES PARITY CHECK
		OUTPUT W HEN AN ADDRES BUS PAR ITY ERROD IS DETECTED
		APCHK# IS ASSERTED 2 CLOCK CYCLES AFTER EADS# IS
		SAM PLE ACTIVE . APCHK\$ REM AIN ACTIVE FOR ON CLOCK
		CYCLE.
[APICHEN]	IO	APT ENABLE.
or picd1		
BE0#	0	BYTE ENABLE PATHO (D7D0).
BE1#	0	BYTE ENABLE PATH1 (D15D8).
BE2#	0	BYTE ENABLE, PATH 2 (D23D16).
BE3#	0	byte enable, path3 (D31:D24).
BE4#	0	BYTE ENABLE, PATH4 (D 39 D 32).
BE5#	0	BYTE ENABLE, PATH5 (D47:D40).
BE6#	0	BYTE ENABLE, PATH6 (D55:D48).
BE7#	0	BYTE ENABLE, PATH7 (D63D56).

SYMBOL	TY PE	DESCRIPTION
BF	I	THE BUS FREQUENCY SIGNAL (BF) DETE RM INES THE IO BUS
		TO PROCESSOR CORE FREQUENCY RATIO.
BOFF#	I	ENSURE THAT THE PROCESSOR DOESN T FETCH STALE DATA
		FROM MAIN MEMORY.
BP3:2	0	THE BREAK POINT OUTPUTS INDICATE THAT A BREAKPOINT
		MATCH HAS BEEN DETECTED THROUGH THE BRESKPOINT
		REGISTER.
BP/PM 1:0	0	BREAKPOINT AND PERFORMANCE MONITORING PINS.
BRDY#	I	THE BURS READY INPUT INDICATES THAT THE CURRENTLY ADDRE
		SSED DEVICE HAS PRESENTED VALID DATA ON THE DATA BUS PINS
		${\rm I\!N}$ response to a read or that currently addressed dev ${\rm I\!C}$
		HAS ACCEPTED DATA FROM THE PENTIUM CPU IN RESPONSE TO A
		WRITE.
BRDCY#	I	THE BURS READY NPUT INDICATES THAT THE LEVEL 2 CACHE HAS
		PRESENTED VALD DATA ON THE DATA BUS PINS IN RESPONSE TO A
		READ OR THAT THE LEVEL 2 CACHE HAS ACCEPTED DATA FROM
		THE PENTIUM CPU IN RESPONSE TO A WRITE.
BREQ#	0	THE INTERNAL CYCLE PENDING OUTPUT INDICATES THAT THE
		PENTIM M CROCESSOR HAS A BUS CYCLE REQUEST PENDING.
BT3BT0	NA	BRANCH TRACE LINES ARE DRIVEN DURING A BRANCH TRACE
		SPECIAL CYCLE.
BUSCHK#	I	THE BUS CHECK ALLOW S SYSTEM DESIGNERS TO NOTIFY THE CPU
		F A BUS CYCLE HAS NOT COM PLETED SUCCESSFULLY.
CACHE#	IQ	CACHE# SIGNAL IS ACTIVE W HEN INFORMATION IS BEGIN
		TRANSFREED BETW EEN EXTERNAL MEMORY AND AN INTERNAL
		CACHE.
CLK	I	CLOCK PROVIDES THE FUNDAMINTAL TIM ING AND THE INTERNAL
		OPERATING FREQUENCY FOR THEE PENTIUM M ICROPROCESSOR
CPUTYP	I	CPU TYPE PN SAM PLED BY THE PROCESSOR AT THE TRALNG-
		EDGE OF RESET TO DETERM INE W HETHER IT IS PRIMARY OR THE
		DUAL PROCESSPR .

5. PIN DESCRIPTIONS OF MAJOR COMPONENTS

5.1 PENTIUM MICROPROCESSOR (P54LM)

SYMBOL	TY PE	DESCRIPTION
D7:D0	ΙO	DATA PATH ZERO.
D51:D8	ĨŎ	DATA PATH ONE.
D23D16	ĨQ	DATA PATH TW O.
D31:D24	ΙÖ	data path three.
D39D32	ΙÓ	DATA PATH FOUR.
D47:D40	ΙÓ	DATA PATH FIVE.
D55:D48	ΙÓ	DATA PATH SK.
D63D56	IQ	data path seven.
D/C#	ΙØ	DATA OR CONTROL.AT THE START OF BUS CYCLE, THE PENTIUM
		processor sets this line high if data w ill be transfered
		DURING THE CURRENT BUS CYCLE OTHERW ISE SETS IN TO LOW .
D /P#	0	DUAL/PRIMARY .THIS IS AN OUTPUT OF PRIMARY PROCESSOR AND
		IS NOT USED BY THE DUAL PROCESSOR $\ensuremath{\mathrm{I\!T}}$ ASSERTED (LOW) BY THE
		PRIMARY PROCESSOR W HEN IT HAS ACQUIRED PRIVATE BUS OW N-
		ership and has initiated a bus cycle
DPO	ΙO	PARITY BI FOR DATA PATH 0,0700.
DP1	ΙÓ	pariny bit for data path 1,015:08.
DP2	ĨQ	PARITY BI FOR DATA PATH 2D23D16.
DP3	ΙÖ	PARITY BIT FOR DATA PATH 3,D31 D24.
DP4	ĨQ	parity bit for data path 4,039,032.
DP5	ΙÓ	PARITY BIT FOR DATA PATH 5,047:040.
DP6	ĨQ	parity bit for data path 6,055,048.
DP7	ΙQ	PARITY BI FOR DATA PATH 7,063,056.
DPEN#	ΙO	DUAL PROCESSOR ENABLE.
EADS#	I	THE EXTERNAL ADDRESS STROBE SIGNAL INDICATES THAT A VALID
		external address has been driven onto the pentium s a 4 a 3
		ADDRESS LINES BY ANOTHER MASTER.
EW BE#	I	THE EXTERNAL W RITE BUFFER EM PTY IS USED TO ENSURE THAT
		MEMORY OPERATIONS OCCUR IN ORDER OF EXECUTION.
FLUSH#	I	THE CACHE FLUSH INPUT FORCES FORCES THE PENTIUM ROCE-
		SSOR TO FLUSH THE CONTENTS IN OF ITS INTERNAL CACHE.
FERR#	0	FLOATINGOPOINT ERROR OUTPUT PIN IS DRIVEN ACTIVE W HEN A
		FLOATING-POINT ERROR OCCURS.

SYMBOL	TY PE	DESCRIPTION
FRCMC#	I	THE FUNCTOIN REDUNDANCY CHECKING MASTER CHECKER# PIN IS
11101101	-	SAM PLED BY THE PENTIM M CROPROCESSOR DURING RESET TO
		DETERM INE W HETHER THE M ICROPROCESSOR SHOULD BE CONFIG
		ED AS A FUNCTIONAL REDUNDANCY MASTER OR CHECKER.
нт#	IQ	THE HIT # SUNAL ACTIVE TO INDICATE A SNOOP HIT IN EITHER
	10	THE INTERNAL CODE OR DATA CACHE.
HITM #	τØ	THE PENTIUM M COPROCESSOR DRIVES THE HI MODIFIED
пты #	10	SIGNAL ACTIVE TO INDICATE A SNOOP HIT TO A MODIFIED
		LINE IN THE DATA CACHE.
	70	
HLDA	IO	BUS HOLD ACKNOW LEDGE.
HOLD	I	THE BUS HOLD REQUEST INPUT ALLOW S ANOTHER BUS MASTER
		TO GAIN COM PLETE CONTROL OF THE PENTIUM S LOCAL BUSES.
BT	NA	THE INSTRUCTION BRANCH TAKEN SIGNAL IS DRIVEN ACTIVE FOR
		ONE CLOCK CYCLE W HEN PENTIUM M CROPROCESSOE EXECUTES
		AN INSTRUCTION RESULTING IN AN EXECUTION BRANCH.
ERR#	0	INTERNAL ERROR IS ASSERTED WHEN A PARIFY ERROR IS ENCOU-
		NTERED INSIDE THE PENTIUM MICROPROCESSOR.
GNNE#	I	GNORE NUM ERIC ERROR INPUT IS ASSERTED BY EXTERNAL LOGIC
		THE PENTIUM MICROPROCESSOR WILL GNORE A NUMERIC ERROR
		AND CONTINUE EXECUTING NON-CONTROL FLOATING-POINT INSTRU
		CTDNS.
NT	I	PENTIUM M CROCESSOR INIT INPUT HASTHE SAME EFFECT AS
		THE RESET SIGNAL EXCEPT THAT THE FOLLOW NG RETAIN
		THE VALUES.
INTR	I	THIS IS MASKABLE INTERRUPT REQUEST INPUT.
INV	I	THE INVALIDATE INPUT TELLS THE PENTIUM M CROPROCESSOR
		W HETHER THE CACHE LINE STATE SHOULD BE MARKED INVALIDAT
		ED OR SHARED AS A RESULT OF SNOOP HIT.
IJ	NA	THE IJ SIGNAL ID CATED THAT AN INSTRUCTION IN THE "u"
		PIPLINE HAS COM PLETED EXECUTION.
V	NA	THE U SIGNAL DICATED THAT AN INSTRUCTION IN THE "V"
		PIPLNE HAS COM PLETED EXECUTION.

5. PIN DESCRIPTIONS OF MAJOR COMPONENTS

5.1 PENTIUM MICROPROCESSOR (P54LM)

SYMBOL	TY PE	DESCRIPTION
KEN#	I	THE CACHE ENABLE PIN IS SAM PLED TO DETERM INE IF THE
		CURRENT BUS CYCLE IS CACHEABLE.
LINTO OR	I	IF THE PROCESSOR S LOCAL APIC IS ENABLE, THIS IS THE
1NTR		LINTO INPUT TO THE APIC .
LOCK#	ΪQ	THE LOCK#SIGNAL IS ASSERTED WHEN THE PENTIUM
		M ICROPROCESSOR W ANTS TO RUN MULTIP BUS CYCLES
		w ITHOUT HAVING THE BUSES TAKEN AW AY BY ANOTHER BUS
		MASTER.
M/ID#	ΪQ	MEMORY OR IO.AT THE START OF BUS CYCLE, THE PENTIUM
		processor sets this line high if addressing a memory loc-
		ATION AND LOW IF ADDRESSING AN IO LOCATION.
NA#	I	THE NEXT ADDRESS INPUT INDICATES THAT THE MEMORY
		SUBSYSTEM IS CAPABLE FO TAKING ADVANTAGE OF THE
		PENTIUM MICROPROCESSOR SADDRESS PIPELINING.
NM I	I	NON-MASKABLE INTERRUPT REQUEST.
PBREQ#	ΙØ	$\operatorname{pr}\operatorname{I\!NATE}$ bus request only used $\operatorname{I\!N}$ dual processor system .
PBGNT#	ΙØ	$\operatorname{pr}\operatorname{I\!N}\operatorname{ate}\operatorname{bus}\operatorname{grant}\operatorname{only}\operatorname{used}\operatorname{I\!N}\operatorname{dual}\operatorname{processor}\operatorname{system}$.
PCHK#	0	SEE DPO.
PCD	0	PAGE CACHE DISABLE.
PEN#	I	PARITY ENABLE.
PH II #	ΪQ	PAR NATE BUS HIT PHIT IS AN OUTPUT FROM THE LRM AND AN
		$\operatorname{I\!N}\operatorname{PUT}$ to the MRM IIIS USED $\operatorname{I\!N}$ A dual processor sytem .
PHIM #	ī/O	PRIVATE BUSHITON MODIFIED LINE.
PICCLK	I	PROGRAMMABLE INTERRUPT CONTROLLER CLOCK.
PICDO OR	ΙØ	PROGRAMMABLE INTERRUPT CONTROLLER DATA LINEO.
DEPN#		
PICD1OR	ΪQ	PROGRAMMABLE INTERRUPT CONTROLLER DATA LINE1.
APICEN		
PRDY	0	PROBE READY ASSERTED BY THE PROCESSOR W HEN IT HAS STOP-
		PED EXECUTION IN RESPONSE TO THE RASHSIGNAL BEING ASSERTED
		LOW .
PW T	0	THE PAGE W RIFE-THROUGHT PIN REFLECTS THE STATE OF THE
		PAGE ATTRIBUTE BIT.

SYMBOL	TY PE	DESCRIPTION
RESET	I	1 KEEPS THE M ICROPROCESSOR FROM OPERATING UNTIL THE
		Pow er supply voltages have come up and stsbilded.
		2 FORCES KNOW N DEFAULT VALUES INTO THE PENTIUM
		PROCESSOR REGISTER.
R /S#	I	RUN/STOP.W HEN SET HIGH , THE PROCESSOR IS PERM IITED TO
		RUN NORMALLY W HEN SET LOW , THE PROCESSOR CEASES TO
		EXECUTE INSTRUCTIONS AND ENTERS PROBE MODE.
SCYC	IO	SPLIT CYCLE IS VALID FOR LOCKED BUS CYCLES OLY SCYC IS
		ASSERTED W HEN A LOCKED TRANSFER RESULTS IN A M ISALIGNED
		MWMORYACCESS.
SM IH	I	SYSTEM MANAGEMENT INTERRUPT INFORMS THE PROCESSOR
		THAT A SYSTEM MANAGEMENT INTERRUPT ROUTINE RESIDING IN
		SYSTEM MANAGEMENT ADDRESS SPACE NEEDS TO BE PERFORME
SM ICAT#	0	SYSTEM MANAGEMENT INTERRUPT ACKNOW EDGW INFORMS EXTE
		RNAL LOGIC THAT THE PROCESSOR IS IN SYSTEM MANAGEMENT
		MODE.
TCK	I	TEST CLOCK USED TO CLOCK STATE INFORMATION AND DATA INT
		AND OUT OF DEVICE DURING BOUNDARY SCAN.
TDI	I	TEST NPUT USED TO SHIFT DATA AND INSTRUCTIONS INTO THE
		TEST ACCESS PORT IN A SERIAL BIT STREAM .
TDO	0	test output used to shift data out of the test access por
		IN A SERIAL BIT STREAM .
TM S	I	TEST M ODE SELECT USED TO CONTROL THE STATE OF THE TEST
		ACCESS PORT CONTROLLER .
TRST#	I	TEST RESET USED TO FORCE THE TEST ACCESS PORT CONTROLLED
		NTO AN NITALIZED STATE.
₩В/₩Т#	I	THE WRITE-BACK OR WRITE THROUGH INPUT ALLOW S EXTERNAL
		logic to determ ine w hether a is placed in the w rite back
		OR W RITE THROUGH STATE.
W/R#	ĨŎ	W RITE OR READ AT THE START OF A BUS CYCLE THE PENTION
		PROCESSOR SETS THIS LINE HIGH IF THE CURRENT BUS CYCLE IS
		WRITE BUS CYCLE W R # IS SET LOW IF THE CURRENT BUS CYCLE
		IS A READ BUS CYCLE.

10

5. PIN DESCRIPTIONS OF MAJOR COMPONENTS

5.2 UM8891-N PCI HOST BRIDGE AND MEMORY/CACHE CONTROLLER

SYMBOL	TY PE	DESCR PTION
CA4A	0	CACHE RAM ADDRESS BIL. FOR ASYNCHRONOUS SECONDARY
	-	CACHE RAM APPLICATION IT PROVIDES SYSTEM ADDRES BIT
		4 FOR BANK A.
CA4B	0	CACHE RAM ADDRESS BIT.FOR ASYNCHRONOUS SECONDARY
011 10	Ű	CACHE RAM APPLICATION IT PROVIDES SYSTEM ADDRES BIT
		4 FOR BANK B.
CA3	0	CACHE RAM ADDRESS BIL.FOR ASYNCHRONOUS SECONDARY
CAS	0	CACHE RAM ADDRESS BILFOR ASTNCHRONOUS SECONDART
		3. FOR SYNCHRONOUS SECONDARY CACHE RAM APPLICATION.
000014004	0	
CRCSA#/CE#	0	CACHE RAM CHIP SELECT FOR BANK A.
CRCSB#/ADSC#	0	CACHE RAM CHIP SELECT FOR BANK B.
CROEA#/OE#	0	CACHE RAM OUTPUT ENABLE FOR BANK A.
CROEB#/ADV#	0	CACHE RAM OUTPUT ENABLE FOR BANK A.
CRW [7:0]	0	CACHE RAM WRITE CONTROL.SECONDARY CACHERAM WR-
		ITE CONTROL SIGNALS W ITH RESPECT TO EACH BYTE.
TA[7:0]	ΙO	ADDRESS TAG RAM DATA.
TRW R#	0	ADDRESS TAG RAM WRITE CONTROL SIGNAL.
PALTH	0	PROCESS ADDRESS LATCH CONTROL SIGNAL.
M DPERR#	I	MEMORY DATA PARITY ERROR . INPUT FROM UM 8892N .IND I-
		CATES THERE IS A PARITY ERROR ON MD BUS.
ADPAR	т	PCIDATA PARITY .NPUT FROM UM 8892N . FOR 32-BIT DATA BUS
	-	PARITY.
PDCTL[3:0]	0	PCI DATA BUS CONTROLOUTPUT TO UM 8892N.CONTROL PD
PDC111[3:0]	0	BUS DIRECTION AND LATCH FUNCTIONS.
M D G MT [240]	0	
M DCTL[3:0]	0	M EM ORY DATA BUS CONTROL.OUTPUT TO UM 8892N.CONTROL
		THE M D BUS DIRECTION AND LATCH FUNCTION.
ADCTL[3:0]	0	PCIDATA BUS CONTROL.OUTPUT TO UM 8892N.CONTROL AD
		BUS DIRECTION AND LATCH FUNCTION.
AD[31:0]	ΙO	32-BIT PCIADDRESS AND DATA BUS.
FRAM E#	IQ	PCIBUS TRDY#SIGNAL.CYCLE FRAME.OUTPUT WHEN UM 891N
		ACTS AS CURRENT PCIBUS IN IT ATOR; OTHERW ISE, IT IS AN
		INPUT PIN FRAME# IS DEASSERTED TO INDICATE THAT THE
		IN IT TATOR IS READY TO COM PLETE THE FINAL DATA PHASE.
PCICLK	I	PCIBUS CLOCK
CBE#[3:0]	ΙO	PCIBUS COMMAND AND BYTE ENABLE SIGNALS
PAR	IQ	PCIBUS PARITY BIT
SERR#	0	PCIBUS SERR# SIGNAL
LOCK#	ΙO	PCIBUS LOCK# SIGNAL .NDICATES A LOCK CYCLE.
STOP#	TO	PCIBUS STOP# SIGNAL OUTPUT W HEN UM 8891 ACTS AS A TAR-
0101 11	10	GET OF PCIBUS CYCLE TO INDICATE THAT IT REQUESTS THE
		NITATOR TO STOP THE TRANSACTION IN PROGRESS ON THE
D DI CODT II		CURRENT DATA PHASE: OTHER IT IS AN OUTPUT PIN.
DEVSEL#	IQ	PCIBUS DEVSEL# SIGNAL. DEVICE SELECT ASSERTED W HEN
		UM 8891N DECODING LOGIC IS TRUE OTHERW ISE IT IS AN INPUT
		PN.
TRDY#	IQ	PCIBUS TRDY# SIGNAL. TARGET READY .IT IS ASSERTED W HEN
		UM 8891N IS READY TO COM PLETE THE CURRENT DATA PHASE.
IRDY#	IQ	PCIBUS IRDY# SIGNAL. IN IT IATOR READY. DUR ING A W RITE,
		IRDY#ASSERTED INDICATES THAT THE INITIATOR IS DRIVING
	1	VALID DATA ONTO THE DATA BUS DURING A READ , IRDY # ASS-
		ERTED INDICATES THAT THE INITIATOR IS READY TO ACCEPT
	1	DATA FROM THE TARGET.
REQ#	0	PCIBUS REQUEST .
GNT#	T	PCIBUS GRANT.
MWE#	0	DRAM W RITE ENABLE
MA[11:0]	0	DRAM WRITE ENABLE DRAM ADDRESS SIGNALS
CAS[7:0]	0	DRAM COLUMN SIGNAL STROBE

SYMBOL	TYPE	DESCRIPTION
RAS[5:0]	0	DRAM ROW SIGNAL STROBE
RAS[7:6]	0	DRAM ROW SIGNAL STROBE
PA [31:0]	ΙO	PROCESSOR ADDRESS BUS.
PBE7#-PBE0#	I	BYTE ENABLE.
ADS#	I	ADDRESS STROBE. INDICATES THAT A NEW VALID BUS CYCLE IS CURRENTLY BEING DRIVEN BY THE CPU.
PM ID	т	MEMORY OR TO ACCESS DEFINES WHETHER THE CURRENT
	-	CPU CYCLE IS A MEMORY OR IO ACCESS.
PW R	I	W RIFE OR READ ACCESS DEFINES W HETHER THE CURRENT CPU CYCLE IS A W RIFE OR READ ACCESS.
PDC	I	DATA OR CODE ACCESS DEFINES W HETHER THE CURRENT
DI O GIV #	т	CPU CYCLE IS A DATA OR CODE ACCESS.
PLOCK#	1	BUS LOCK . IND ICATES THAT CURRENT CPU BUS CYCLES SHO-
		ULD NOT BE INTERRUPTED SUCH AS WHEN THE CPU IS RUNNI-
		NG A READ-MODIFY-WRITE CYCLE OR INTERRUPT ACKNOW LE-
	_	DGE CYCLE.
CACHE#	I	CACHE-ABLIIY. NDICATES CPU INTERNAL CACHE-ABLIIY FOR THE CURRENT CYCLE.
HITM #	I	HIM ISS TO A MODIFIED LINE INDICATES THE CURRENT INO-
пшп #	-	URE CYCLE HIT A MODIFIED LINE IN CPU DATA CACHE AND
DUOID	0	CPU W ILL SCHEDULE A W RITE-BACK CYCLE TO THE BUS.
PHOLD	0	CPU HOLD.
PHLDA	I	CPU BUS HOLD ACKNOW LEDGE.
BOFF#	0	BACK-OFF THIS SIGNAL IS USED TO FORCE CPU OFF THE BUS IN THE NEXT CLOCK .
KEN#	0	CACHE ENABLE .
BRDY#	0	BURST-OFF.THIS SIGNAL INDICATES TO THE CPU THAT THE
DICD I #	Ŭ	VALD DATA IS ON THE DATA BUS IN RESPONSE TO A READ
		CYCLE OR THE DATA PROVIDED BY CPU HAS BEEN ACCEPTED
		IN RESPONSE TO A W RITE CYCLE.
W BW T#	0	RESERVED
NA#	0	NEXT ADDRESS. THIS SIGNAL NDICATES TO THE CPU THAT
	-	UM 8891 IS READY TO ACCEPT A NEW BUS CYCLE.
INV OT4	0	INVALIDATION REQUEST. THIS SIGNAL INDICATES TO THE CPU TO DETERM INE THE FINAL STATE OF A CACHE LINE AS A RES-
		ULT OF AN NQURE HIT.
EADS#	0	EXTERNAL ADDRESS STROBE.
SM IACT#	I	SYSTEM MANAGEMENT INTERRUPT ACTIVE INDICATES THAT
		THE CPU IS OPERATING IN SMM.
SUSPA	I	SUSPENT ACKNOW LEDGE FOR CYRIX CPU
REFRESH#	I	REFREAH REQUEST INPUT
RESET	I	RESET .THIS IS A SIGNAL OF 8891N
CLK	I	CPU CLOCK INPUT
CLKDC	I	INPUT FROM UM 8886N TO NOTIFY UM 8891N
CLKRUN#	0	RESERVED
SCLKCTL	0	SSYNCHRONOUS SRAM CLOCK CONTROL.
CPUPD	I	NOTIFY UM 8891N THAT CPU IS POW ER-DOW N OR CLOCK D.C
891BUSY#	0	RESERVED
TESTI	Т	TEST INPUT M UST BE LOW
TESTO	0	TEST OUTPUTVCC5
VCC5	Ť	5V POW ER FOR PCIINTERFACE LOGIC
VCC3	1	3.3V POW ER FOR CCPU INTERFACE LOGI
VCCD		POW ER FOR DRAM INTERFACE
VCCS	-	POW ER FOR DRAM NIERFACE POW ER FOR CACHE SRAM INTERFACE PINS
	1	

11

5. PIN DESCRIPTIONS OF MAJOR COMPONENTS

5.3 UM8892-N DATA PATH CONTROLLER

SYMBOL	TY PE	DESCRIPTION
PD[63:0] IO CPU DATA BUS		CPU DATA BUS
		data bus direction and internal latch are controlled by pdctl 3-0.
		FOUR BUFFERS STORE PD TO M D DATA.AND FOUR BUFFERS STORE PD TO AD DATA.
MD[63:0]	ΙØ	M EM ORY DATA BUS
		DATA BUS DIRECTION AND INTERNAL LATCH ARE CONTROLLED BY M DCTL2-0
		ONE BUFFER STORES MD TO AD DATA.
AD[31:0]	ΙØ	PCIAD BUS
		DATA BUS DIRECTION AND INTERNAL LATCH ARE CONTROLLED BY ADCTL3-0.
		TW O 32BIT BUFFERS STORE AD TO PD DATA AND TW O 32BIT BUFFERS STORE AD TO MD DATA
MDCTL[3:0]	I	M EM ORY DATA BUS CONTROL. NPUT FROM UM 8891N CONTROL M D M EM ORY DATA BUS DIRECTION AND LATCH FUNCTION.
PDCTL[3:0]	I	CPU DATA BUS CONTROL.
		INPUT FROM UM 8891N CONTROL PD (CPU DATA_BUS DIRECTION AND LATCH FUNCTION.
ADCTL[3:0]	I	PCIDATA BUS CONTROL.
		INPUT FROM UM 8891N CONTROL AD (CPU DATA_BUS DIRECTION AND LATCH FUNCTION.
M DPERR#	0	M EM ORY DATE PARITY ERROR .OUTPUT TO UM 8891N, INDICATING A PARITY ERROR OCCURRED ON M D BUS.(64-B IT M D PARITY CHECK)
CTK	I	CPU CLOCK
PCICLK	I	PCIBUS CLOCK
ADPAR	0	PCIDATA PARITY.OUTPUT TO UM 8891N, FOR 32-BIT PCIDATA PARITY (EVEN PARITY)
DP[7:0]	ΙO	PAR ITY FO M D BUS.
VCCD		POW ER FOR DRAM INTERFACE.FOR 5V OR 3.3V DRAM APPLICATIONS.CONNECT THESE POW ER PINTS TO 5V OR 3.3V
VCC5		POW ER PINS FOR 5V
VCC3		POW ER FOR 3.3V
GND		GROUNG

5. PIN DESCRIPTIONS OF MAJOR COMPONENTS

5.4 UMC UM8886-N PCI TO ISA BRIDGE

SYMBOL	TY PE	DESCRPTION
AD {31:0}	I/O	32 BIT PC IADDRESS AND DATA BUS
C/BE{3:0}	I/O	PCIBUS COMMAND AND BYTE ENABLE SIGNALS
DEVSEL#	ľQ	PCIBUS DEVESEL SIGNAL. THIS ACTS AS AN OUTPUT PIN W HEN THE IBC
		IS THE SLAVE OF PCIBUS CYCLE TRANSACTION : OTHERW ISE. IT IS AN
		NPUT PN.
TRDY#	I/O	PCIBUS TRDY SIGNAL. THIS ACTS AN OUTPUT PIN W HEN THE IBC IS THE
		SLAVE OF PCIBUS CYCLE TRANSACTION : OTHERW ISE. IT IS AN INPUT
		PN.
IRDY#	I/O	PCIBUS IRDY SIGNAL. THIS ACTS AS AN OUTPUT PIN W HEN THE IBC ISS-
		UES A CYCLE TO PCIBUS OTHERW ISE. IT IS AN INPUT PIN.
FRAM E#	I/O	PCIBUS FRAME SIGNAL. THIS ACTS AS AN OUTPUT PIN W HEN THE IBC
		ISSUES A CYCLE TO PCIBUS OTHERW ISE. IT IS AN INPUT PIN.
IDSEL	I	PCIBUS IDSEL INPUT SIGNAL. IDSEL IS USED AS CHIP SELECT DURING
		CONFIGURATION READ AND W RIFE TRANSACTION.
PAR	0	PCIBUS PAR MY BM.
SERR#	I	SYSTEM ERROR.UPON SAMPLING THIS PIN ACTIVE.THE IBC GENERATES
		AN NM ITO THE CPU.
LOCK#	I	PCIBUS LOCK SIGNAL TO INDICATE LOCK CYCLE.
STOP#	I/O	PCIBUS STOP SIGNAL. THIS ACTS AS AN OUTPUT PIN W HEN THE IBC IS
		THE SLAVE OF PCIBUS CYCLE TRANSACTION : OTHERW ISE. IF IS AN
		NPUT PIN.
I NT{D : A }	I	PCIBUS INTERRUPT REQUEST A.B.C.D.
BCLK	0	ISA BUS CLOCK OUTPUT.
BALE	0	BUS ADDRESS LATCH ENABLE.
SA {19:0}	0	SYSTEM ADDRESS BUS SA $\{19:0\}$.SA $\{19:0\}$ ARE OUTPUT.EXCEPT DUR \mathbb{N} G
		ISA MASTER CYCLES.
LA {23:}	0	latch-able address bus la {23:17} . la {23:17} are output . except
		DUR NG ISA MASTER CYCLES.
SBHE#	0	SYSTEM BUSHIGH ENABLE INDICATES THE HIGH BYTE ON THE ISA DATA
		BUS SD {15:8} IS VALID.
SD {15:0}	I/O	16 BIT ISA SYSTEM DATA BUS.
IDR#	0	ISA IO READ COMMAND.
IOW #	0	ISA IO W RITE COMMAND.
M EM R #	0	ISA M EM ORY READ COM M AND .
MEMW#	0	ISA M EM ORY W R ITE COM M AND .

SYM BOL	TY PE	DESCRPTION
SM EM R#	0	ISA SYSTEM MEMORY READ COMMAND.
SM EM W #	0	ISA SYSTEM MEMORY WRITE COMMAND.
DCS16#	I	16-BIT 10. THIS SIGNAL INDICATES THAT BUS SIZE OF CURRENT ISA 10
		SLAVE IS 16 BITS.
M EM CS16#	ΙΌ	16-BIT MEMORY.THIS PIN INDICATES THAT THE BUS SIZE OF CURRENT
		ISA M EM ORY SLAVE IS 16 B IT.
0W S#/AC∎N	I	NO W AIT STATES.THIS SIGNAL IS ASSERTED BY ISA SLAVE IN ORDER TO
		SHORTEN THE CYCLE.
DCHRDY	ΙO	CHANNEL READY. DCHRDY IS USED BY ISA SLAVES TO INSERT WAIT
		STATES.
M ASTER#	I	16-B IT M ASTER . INDICATES THAT A 16-B IT ISA M ASTER HAS CONTROL OF
		THE ISA BUS.
AEN	0	ISA BUS AEN SIGNAL.WHEN HIGH. INDICATES THAT DMA OR REFRESH
		CONTROLS THE ISA BUS.
DCHCK#/	I	IO CHANNEL CHECK JBC W ILL GENERATE NM ITO CPU UPON SAM PLING
CLKRUN#		THIS PIN ACTIVE; CLKRUN IS RESERVED FOR FUTURE USE.
REFRESH#	ΙÓ	IO SYSTEM REFRESH CONTROL.OUTPUT TO ISA BUS W HEN CONVERTING
		SYSTEM TIMER TICKS INTO REFRESH CYCLE.
CPUREQ	I	CPU REQUEST.CPU NINATOR REQUESTS THE PCIBUS.
req 0# /		al sur
COVERSW #	I	PCIM ASTER REQUEST 0.FOR REEQUESTS NITATED FROM PCIBUS
		MASTER.
		COVERSW FROM EXTERNAL LCD COVER SW IICH TO INFORM THE PM U
		THAT THE LCD COVER HAD BEEN CLOSED SO THAT PM U CAN FORCE
		SYSTEM TO ENTER SUSPEND M ODE.
REQ1#	I	PCIM ASTER REQUEST 1.
REQ2#/	I	PCIM ASTER REQUEST 2.
891BUSY#		THE 891BUSY IS RESERVED FOR FUTURE USE.
REQ3#/	I	PCIMASTER REQUEST 3. THIS PINALSO ACTS AS "COVERSW" FROM EXT-
COVERSW #		ERNAL LCD COVER SW IICH TO INFORM THE PM U THAT LCD COVER HAD
		BEEN CLOSED SO THAT PM U CAN FORCE SYSTEM ENTER SUSPEND MODE.
GNT0# /	0	PCIM ASTER GRANT 0. ARBITER HAS GRANTED PCIBUS MASTER OR AS
NCLKDC#		NCLKDC#UM 8886N W ILL FORCE NCLKDC#LOW TO INFORM UM 8891 THAT
		CPU CLOCK W ILL BE D.C.
GNT1#	0	PCIMASTER GRANT 0.

5. PIN DESCRIPTIONS OF MAJOR COMPONENTS

5.4 UMC UM8886-N PCI TO ISA BRIDGE

SYMBOL	TY PE	DESCRPTION
GNT2# /	0	PCIMASTER GRANT 2.
SUSP#		THIS PIN ALSO ACTS AS SUSP#OUTPUT WHICH WILL BE FORCED LOW
		AFTER ENTER NG SUSPEND MODE AND THE CLOCK TO CPU HAD BEEN
		STOPED.
GNT3# /	0	PCIMASTER GRANT 3.OR NCLKDC#UM 8886N W ILL FORCE NCLKDC#TO
NCLKDC#		LOW TO INFORM UM 8891 THAT CPU CLOCK W ILL BE D.C.
X 32K	I	32K CLOCK INPUT.
DREQ {3:0}	I	DM A REQUEST. THESE SIGNALS ARE USED TO REQUEST DM A SERVICE.
DREQ {7:5}		
DACK#{7:0}	IO	DM A ACKNOW LEDGE.THE IBC ASSERTS THESE OUTPUT LINES TO INDICA
		TE THAT THE DM A DEVICE HAS BEEN GRANTED SERVICE.
EOP	IQ	END OF PROCESS. IN INPUT MODE. THIS PIN IS USED BY THE DMA DEVICE
		TO STOP CURRENT DM A TRANSFER .IN OUTPUT MODE . DM A CONTROLLER
		ASSERTS EOP TO INDICATE TO THE ACTIVE DM A DEVICE THAT THE TRAN
		SFER HAS REACHED THE TERM INAL COUNT.
IRQ1	I	ISA BUS INTERRUPT REQUEST 1.
IRQ {7:3}	I	ISA BUS INTERRUPT REQUEST {7:3}
IRQ8	I	RTC INTERRUPT REQUEST.
IRQ {12:9}	I	ISA BUS INTERRUPT REQUEST {12:9}
I RQ{15:14}	I	ISA BUS INTERRUPT REQUEST {15:14}
NTR	0	MASKABLE INTERRUPT TO CPU.
NM I	0	NONM ASKABLE INTERRUPT TO CPU.
SM IH	IQ	SYSTEM MANAGEMENT INTERRUPT.OUTPUT TO CPU TO REQUEST SMM
		SERVICE INPUT FROM CPU INDICATES THAT CPU HAS ENTERED SM M
		MODE.
STPCLK#	0	CPU SLOW DOWN /STOP CLOCK CONTROL.
PW RLCH2	0	latch signal to latch pm C output pins from $sd{7:0}$ to generate
		PM CO-5.PM C8 AND CKGENPD.
PW RLCH1	0	latch signal to latch pm c output pins from $sd{7:0}$ to generate
		PM C6.PM C7/SUSP PM C8 PM C9 AND CLKSEL {2:0}.
EXTSM IH	I	EXTERNAL SM I1.
SM IACT#	I	SYSTEM MANAGEMENT INTERRUPT ACKNOW LEDGE FROM INTEL SL
		ENHANCED CPU.
PCICLKI	I	PCIBUS CLOCK INPUT TO THE IBC.
C LK IN	I	OSCILLATOR CLOCK INPUT TO GENERATE CPU AND PCICLOCKS.
OSC	I	TIM E BASE 14.318 M HZ CLOCK INPUT.
HCLK	0	CLOCK OUTPUT TO CPU HOST.
PCICLK 0	0	CLOCK OUTPUT TO PCIBUS.

SYMBOL	TY PE	DESCRPTION
RSTIN	I	RESET NPUT:RSTN IS USED TO NITALIZE THE ENTIRE SYSTEM .
CPURST	0	CPU RESET.THIS PIN IS USED TO INITIALIZE CPU.
RSTDRV	0	${\tt RSTDRV}$. THIS PIN IS USED TO RESET ENTIRE SYSTEM , EXCEPT THE CPU .
KBCLK	I/O	KEYBOARD CONTROLLER CLOCK.CLOCK OUTPUT TO THE 8742.
RC/PGP0	I/O	RESETS INPUT FROM 8042, OR ACTS AS PROGRAM MABLE INPUT, OR OUT-
		PUT PIN 0.
GA20/PGP1/	I/O	ADDRESS A20 GATE FROM 8042.OR ACTS AS PROGRAM MABLE INPUT/OU-
LDEV#		TPUT PIN 1.OR ACTS AS LOCAL DEVICE INPUT FROM VL BUS.
ROM CS#/	0	ROM CS AND KBCS. DUAL FUNCTION PIN. FOR IO CYCLES, THIS PIN IS
KBCS#		KBCS:FOR MEMORY CYCLES, I IS ROMCS.
SPKR	0	SPEAKER DRIVE OUTPUT.
XDEN /PGP3	0	XD BUS DIRECTION CONTROL. OR ACTS AS PROGRAM MABLE OUTPUT PIN
TCRAM W R		3.0R AS TCRAM W R TO READ / R ITE EXTERNAL 4KB RTC.
RTCAS	0	RTC ADDRESS LATCH.
RTCW R	0	RTC W RITE COMMAND.
RTCRD	0	RTC READ COMMAND.
DE1FX	0	DE 1FX CHP SELECT.
IDE 3FX	0	DE 3FX CH P SELECT.
ONOFF#/	I	"ON OFF" SW IICH INPUT TO PMU.SW IICHES BETW EEN FULL-ON MODE
ACIN		AND SUSPEND MODE OR ACTS AS AC IN.
LB1/LB2	I	LOW BATTERY 1 OR LOW BATTERY 2 NPUT.
IDE17X/	0	DE 17X CHIP SELECT. OR ACTS AS PROGRAM MABLE OUTPUT PIN 3.
PGP3		
IDE 37X /	0	DE 37X CHIP SELECT. OR ACTS AS PROGRAM MABLE OUTPUT PIN 2.
PGP2		
DEHDEN	0	ENABLE DE CYCLE.
A 20M	0	MASK PROCESSOR ADDRESS 20: ACTIVE W HEN GA20 IS LOW OR LO PORT
		92H BIT 1 IS HIGH.
EXSM 12/LB2	I	EXTERNAL SMINPUT 2 OR ACTS AS LOW BATTERY 2 INPUT OR KEY
KBCLKI		BOARD CLOCK INPUT.
FERR#	I	W HEN LOW INDICATES THAT A FLOATING POINT ERROR HAS OCCURRED.
IGNNE#	0	GNNE IS ASSERTED LOW TO INSTRUCT THE CPU TO IGNORE A NUMERIC
		ERROR AND CONTINUE EXECUTING NON-CONTROL FLOATING POINT
		NSTRUCTIONS.
TEST	I	THIS PIN USED FOR TESTING ONLY FOR NORMAL OPERATION IT SHOULD
		BE PULLED HIGH.
VCC5		+5V VOLT POW ER SUPPLY.
VCC 3		3.3-VOLT POW ER SUPPLY.

5. PIN DESCRIPTIONS OF MAJOR COMPONENTS

5.5 C&T F65548 VGA CONTROLLER

SYMBOL	TY PE	DESCRIPTION
RESET#	I	RESET FOR VL-BUS INTERFACES CONNECT TO RESET#.FOR
		DIRECT CPU LOCAL BUS INTERFACES , CONNECT TO THE
		SYSTEM RESET GENERATED BY THE MOTHERBOARD SYS-
		TEM LOGIC FOR ALL PERIPHERALS.
ADS#	I	ADDRESS STROBE. IN VL-BUS AND CPU LOCAL BUS INTER-
		FACES INDICATES VALID ADDRESS AND CONTROL SINGAL
		INFORMATION IS PRESENT.
M/10#	I	MEMORY IO. IN VL-BUS AND APU LOCALBUS INTERFACES
		NDICATES MEMORY OR LO CYCLE :1 = MEMORY ,0=LO
W/R#	I	WRIFE / READ. THIS CONTROL SINGAL INDICATES A WRIFE
		(HIGH)OR READ (LOW)OPERATION. IT IS SAM PLED ON THE
		RISING EDGE OF THE (INTERNAL)1x CPU CLOCK W HEN ADS#
		IS ACTIVE.
RDYRTN#	I	READY RETURN HANDSHAKING SINGAL IN VL-BUS INTER-
CRESET	I	FACES INDICATING SYNCHRONIZATION OF RDF# BY THE
		LOCAL BUS MASTER CONTROL TID THE PROCESSOR JPON
		RECEPT OF THIS LCLK-SYNCHRONOUS SIGNAL THE CHP
		W ILL STOP DRIVING THE BUS (IF A READ CYCLEWAS
		ACTIVE) AND TERM INATE THE CURRENT CYCLE.
LRDY#	0	LOCAL READY . DRIVEN LOW DURING VL-BUS AND CPU
		LOCAL BUS CYCLES TO INDICATE THE CURRENT CYCLE
		SHOULD BE COMPLETED . THIS SIGNAL IS DRIVEN HIGH AT
		THE END OF THE CYCLE. THEN TRISTATED.
LDEV#	0	LOCAL DEVICE . IN VL-BUS AND CPU LOCAL BUS INTER-
		FACES, THIS PIN INDICATES THAT THE CHIP OW NS THE
		CURRENT CYCLE BASE ON THE MEMORY OR IO ADDRESS
		W HICH HAS BEED BROADCAST.
LCLK	I	LOCAL CLOCK . IN VL-BUS THIS PIN IS CONNECTED TO THE
		CPU 1x CLOCK. IN CPU LOCAL BUS INTERFACES IT IS
		CONNECTED TO THE CPU 1x OR 2 x CLOCK JF THE INPUT IS
		A $2x$ CLOCK, THE PROCESSORRESET SIGNAL MUST BE
		CONNECTED TO CRESET (PIN23) FOR SYNCHRON ZATION
		OF THE CLOCK PHASE.

SYMBOL	TY PE	DESCRIPTION
BE0#	I	BYTE ENABLE 0.NDICATES DATA TRANSFER ON D7D0 FOR THE CURRENT CYCLE.
BE1#	I	BYTE ENABLE 1. NDICATES DATA TRANSFER ON D15D8 FOR THE CURRENT CYCLE.
BE2#	I	BYTE ENABLE 2. INDICATES DATA TRANSFER ON D23D16 FOR THE CURRENT CYCLE.
BE3#	I	BYTE ENABLE 3. BE3# INDICATES THAT DATA IS TO BE TRANSFERRED OVER THE DATA BUS ON D31:24 DURING THE CURRENT ACCESS.
A(2:23)	I	SYSTEM ADDRES BUS. IN VL-BUS, AND DIRECT CPU INTERFACES, THE ADDRESS PINS ARE CONNECT DIRECTLY
A24	ΙØ	TO THE BUS.
A25	ΙQ	ADDRESS INPUTS THROUGH A23 ARE ALW AYS AVA LABLE A24-27 M AY BE OPTIONALLY USED FOR OTHER FUNCTION :
A 26	ΙØ	N INTERNAL CLOCK SYNTHESIZER TEST MODE (TS# =0 AT
A 26	TO	RESET)A24 BECOM ES VCLK OUT AND A25 BECOM ES MCLK OUT A26 AND A27 MAY BE ALTRNATELY BE USE AS GENERAL PURPOSE LO PINS OR ACTIVITY INDICATOR AND ENABLE BACKLIGHT RESPECTIVELY (SEE PANEL INTERFACE PIN DESCRIPTIONS AND XR5C AND XR72 FOR MORE DETAILS) IF A26 AND A27 ARE USED AS GPD PINS, THEY MAY BE PROGRAMMED AS 2-PIN CRT MONIFOR DDC INTERFACE. EITHER A26 OR A27 MAY ALSO BE USED TO OUTPUT COM POSITE SYNC. FOR SUPPORT OF AN EXTERNAL NTSC / PAL ENCODER CHIP
D(0:31)	ΤΟ	SYSTEM DATA BUS N 32-BIT CPU LOCAL BUS DESIGNS THESE DATA LNES CONNECT D RECTLY TO THE PROCESSOR DATA LNES.ON THE VL-BUS THEY CINNECT TO THE CORRESPONDING BUFFERED OR UNBUFFERED DATA SIGNAL. THESE PINS ARE TRISTATED DURING STANDBY MODE

5. PIN DESCRIPTIONS OF MAJOR COMPONENTS

5.5 C&T F65548 VGA CONTROLLER

SYMBOL	TY PE	DESCRIPTION
RESET#	I	RESET. THIS INPUT IS USED TO BRING SIGNALS AND
		IN THE CHIP TO A CONSISTENT STATE.ALL OUTPUT FROM
		THE CHIPARE TRISTATED OR DRIVEN TO AN INACTIVE
		STATE
CLK	I	BUS CLOCK .THIS INPUT PROVIDES THE TIM ING REFERENCE
		FOR ALL BUS TRANSACTION.
PAR	ΙЮ	PARIRY .THIS SIGNAL IS USED TO MAINTAIN EVEN PARITY
		ACROSS ADO-31 AND C/BEO-3#.PAR IS STABLE AND VALID
		ONE CLOCK AFTER THE ADDRESS PHASE.
FRAM E#	I	CYCLE FRAME . DR VEN BY THE CURRENT MASTER TO
		NDICAYE THE BEGINAND DURATION OF AN ACCESS.
IRDY#	I	NITATOR READY. NDICATE THE TARGET ABLITY TO
		COM PLETE THE CURRENT DATA PHASE OF THE TRANS-
		ACTON .
TRDY#	S/TS	TARGET READY. INDICATES THE TARGETS ABILITY TO
		COMPLETE THE CURRENT DATA PHASE OF THE TRAN-
		ACTION.
STOP#	S/ST	STOP. INDICATES THE CURRENT TARGET IS REQUESTING
		THE MASTER TO STOP THE CURRENT TRANSACTION
DEVSEL#	S/ST	DEVICE SELECT. INDICATES THE CURRENT TARGET HAS
		DECODES ITS ADDRESS AS THE TARGET OF THE CURRENT
		ACCESS.
PESS#	S/TS	PARITY ERROR. THIS SIGNAL IS FOR THE REPORTING OF
		DATA PARITY ERRORS (EXCEPT FOR SPECIAL CYCLE
		W HERE SERR# IS USED).
SERR#	0	SYSTEM ERROR.USED TO REPORT SYSTEM ERROR WHERE
		THE RESULT W ILL BE CATASTROPH $\mathbf \Gamma$ (ADDRESS PARITY
		ERROR, DATA PARITY ERROR FOR SPECIAL CYCLE COM -
		MAND, ETC.)
ROMA(0:17)	0	BIDS ROM ADDRESS OUTPUT. SEE MAD8-15 (PIN170-177)
		FOR BIDS ROM DATA INPUT
ROM OE#	0	BIDS ROM OUTPUT ENABLE.
AD(00:31)	ΙØ	PCIADDRESS /DATA BUS

SYMBOL	TY PE	DESCRIPTION
C/BE0#	I	BUS COMMAND /BYTE ENABLES. DUR ING THE ADDRESS
		PHASE OF A BUS TRANSACTION , THESE PINS DEFINE THE
		BUS COM M AND .(SEE LIST BELOW)
DSEL	I	NITALZATION DEVICE SELECT. USED AS A CHIP SELECT
		DURING CONFIGURATION READ AND WRITE TRANS-
		ACTION.
AA0	I/O	ADDRESS BUS FOR DRAM S A AND B
AA1		
A22		PLEASE SEE THE CONFIGURATION TABLE IN THE EXTENDED
AA3		REGISTER DESCRIPTION SECTION FOR COMPLETE DETAILS
AA4		ON THE CONFIGURATION OPTION FOR CFG0-8(XR01 AND
AA5		XR6C).
ААб		
AA7		
AA8		
CA(0:7)	0	ADDRESS BUS FOR DRAM C
CA8		CA8MAY BECONFIGURED AS VAFC BLANK#OUT
RASA#	0	RAS FOR DRAM A
RASB#		RAS FOR DRAM B
RASC#		RAS FOR DRAM C OR COLOR KEY INPUT FROM EXTERNAL
		PC VIDEO SOURCE .
CASAL#	0	CAS FOR THE DRAM A LOW ER BYTE
CASAH#		CAS FOR THE DRAM A UPPER BYTE
CASBL#		CAS FOR THE DRAM B LOW ER BYTE
CASBH#		CAS FOR THE DRAM B UPPER BYTE
CASCL#	I/O	DRAM C LOW BYTE VIDEO IN RED-6 OR VAFC VP14
CASCH#		DRAM C HIGH BYTE .VIDEO IN RED-7 OR VAFC VP15
W EA#	0	W RITE ENABLE FOR DRAM A
WEB#		W RITE ENABLE FOR DRAM B
WEC#		W RITE ENABLE FOR DRAM C OR VIDEO IN PORT PCLK OUT
OEAB#	0	OUTPUT ENABLE FOR DRAM S A AND B
OEC#		OUTPUT ENABLE FOR DRAMSC
		OR VAFC "VIDEO INPUT CLOCK " IF DRAM C NOT USED

5. PIN DESCRIPTIONS OF MAJOR COMPONENTS

5.5 C&T F65548 VGA CONTROLLER

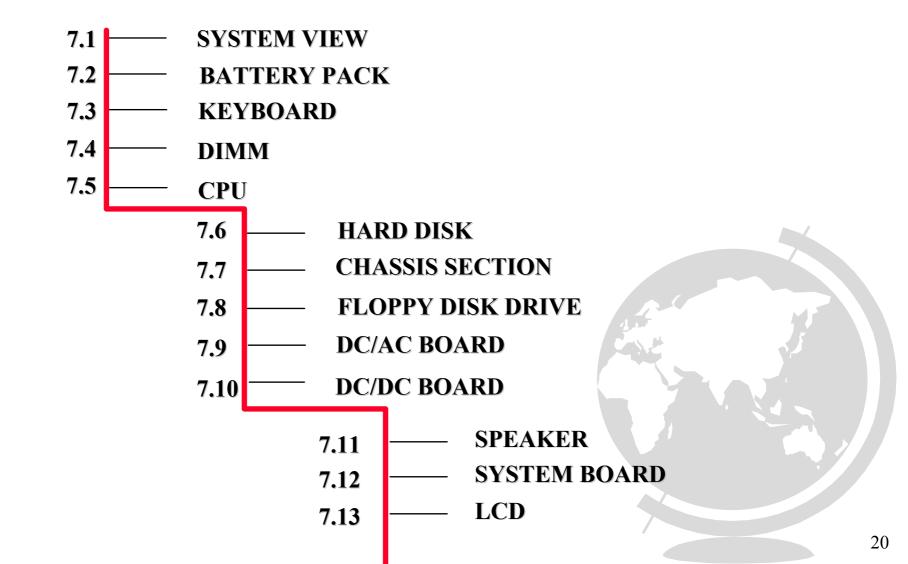
SYMBOL	TYPE	DESCRIPTION
MAD(0:15)	ΙÓ	MEMORY DATA BUS FOR DRAM A (LOWER 512K OF
		DISPLAY MEMORY)
MBD(0:15)	ΙÓ	MEMORY DATA BUS FOR DRAM B (UPPER 512K)
MCD(0:15)	I/O	M EM ORY DATA BUS FOR DRAM C (FRAM E BUFFER)
P(0:15)	0	8,9,12 or 16-bit flat panel data output. 18-bit and
		24-BIT PANEL INTERFACES MAY ALSO BE SUPPORTED
		(SEE CA0-7 FOR P16-23)REFER TO THE TABLE BELOW FOR
		CONFIGURATIONS FOR VARIOUS PANEL TYPES.
SHFCLK	0	SHFT CLOCK . PIXEL CLOCK FOR PANEL DATA .
FLM	0	FIRST LINE MARKER.FLAT PANEL EQUIVALENT OF VSYNC.
LP	0	LATCH PULSE.FLAT PANEL EQUIVALENT OF HSYNC.
М	0	M SIGNAL FOR PANEL AC DRIVE CONTROL (MAY ALSO
		BE CALLED ACDCLK). MAY ALSO BE CONFIGURED AS
		BLANK#OR AS DOSPLAY ENABLE (DE)FOR TFT PANEL.
ENAVDD	0	POW ER SEQUENCING CONTROLA FOR PANEL DRIVER
ENAVEE		ELECTRONICS VOLTAGE VDD AND PANEL LCD BIAS
		VOLTAGE VEE.
ACTI	ΙÓ	AVTINITY INDICATOR AND ENABLE BACKLIGHT OUTPUT.
ENBKL		MAY BE CONFIGURED FOR OTHER FUNCTIONS.
HSYNC	0	CRT HOROZONTAL SYNC (POLARITY IS PROGRAMABLE)
		OR " COM POSITE SYNC " FOR SUPPORT OF VARIOUS
		EXTERNAL NTSC /PAL ENCODER CHIP (SEE ALSO XR27)
VSYNC	0	CRT VERTICAL SYNC (POLARITY IS PROGRAMABLE)OR
		"VSYNC INTERVAL" FOR SUPPORT OF VARIOUS EXTERNAL
		NTSC /PAL ENCODER CHIP (SEE ALSO XR 27)
RED	0	CRT ANALOG VIDEO OUTPUT FROM THE INTERMAL COLOR
GREEN		PALETTE DAC .
BLUE		
RSET	I	SET POINT RESISTOR FOR THE INTERNAL COLOR PALETTE
		DAC.
AVCC		ANALOG POW ER AND GROUND PINS FOR NOISE ISOLATION
AVGND		FOR THE INTERNAL COLOR PALETTE DAC.
XTALI	I	CRYSTAL N. THIS PINS SERVES AS THE INPUT FOR AN
		EXTERNAL REFERENCE OSCILLATOR (USUALLY 14,31818
		MHZ)


SYMBOL	TY PE	DESCRIPTION
CVCC0		ANALOG POW ER AND GROUND PINS FOR NOISE ISOLATION
CGND0		FOR THE INTERNAL COLOR SYNTHESIZER.MUST BE THE
CVCC1		AS VCCFOR INTERNAL LOGIC.
CGND1		
32KHZ	I	CLOCK INPUT FOR REFRESH OF NON -SELF -REFRESH
		DRAM S AND PANEL POW ER SEQUENCING.
STNDBY#	I	STANDBY CONTROL PIN.PULLING THIS PIN TO GROUND
		PLACES THE 65548 IN STANDBY MODE.
NCC		POW ER /GROUND (INTERNAL LOGIC). 5V+10% OR 3.3V+0.3V
IGND		NOTE THAT THIS VOLTAGE MUST BE THE SAME SA CVCC
		(VOLTAGE FOR INTERNAL CLOCK SYNTHESIZER)
NCC		
IGND		
BVC		POW ER /GROUND (BUS INTERFACE).5V+10% OR 3.3V+0.3V
BGND		
BGND		
BVC		
BGND		
BGND		1 S.T.
DVCC		POW ER /GROUND (DISPLAY INTERFACE). 5V±10% OR 3.3V
DGND		+0.3V
DGND		
MVCCA		POW ER /GROUND (MEMORY INTERFACE A). 5V±10% OR
M GNDA		3.3V <u>+</u> 0.3V.
MVCCA		POW ER /GROUND (MEMORY INTERFACE B). 5V±10% OR
M GNDA		3.3V <u>+</u> 0.3V.
MVCCA		POW ER /GROUND (M EMORY INTERFACE C). 5V±10% OR
MGNDA		3.3V±0.3V.

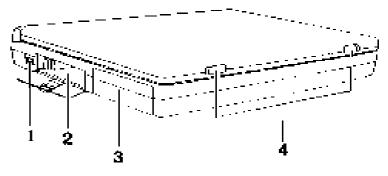
5. PIN DESCRIPTIONS OF MAJOR COMPONENTS 5.6 PC87C334 SUPER I/O CONTROLLER.

SYMBOL	TYPE	DESCRIPTION
3F3RD	0	3F3 READ
ADRATE0,1	0	ADDITIONAL DATA RATE0,1
A10-A0	I	ADDRESS
ACK	I	ACKNOW LEDGE
AFD	I	AUTOMATIC FEED XT
AEN	I	ADDRESS ENABLE
ASTRB	0	ADDRESS STROBE
BARDR0,1	I	BASE ADDRESS
BOUT1,2	0	BAUD OUTPUT
BUSY	I	BUSY
CFG0-4	I	DEFAULT CONFIGURATION
CLK 48	I	CLOCK 48.
CTS1,2	I	CLEAR TO SEND.
D7-D0	ΙØ	DATA.
DCD1,2	I	DATA CARRER DATECT.
DENSEL	0	DENSITY SELECT.
DIR	0	DIRECTION
DR01	0	DR NE SELECT 0,1
DRATE0,1	0	DATA RATE 01
DR D0,1	I	DR IVE ID
DRV2	I	DR IVE2
DR 23	I	DRIVE 2 OR 3
DSKCHG	I	DISK CHANGE
DSR1,2	I	DATA SET READY.
DSTRB	0	DATA STROBE.
DTR1,2	0	DATA TERM NAL READY.
ERR	I	ERROR
FDACK	I	DM A ACKNOW LDGE
FDRQ	0	DM A REQUEST
HCS0	0	hard drive chip select 0.
HCS1	0	hard drive chip select 1.
HDSEL	0	HEAD SELECT.
IDEACK		IDE DM A ACKNOEW LEDGE.
IDED7	ΙÓ	DEBIT7.
IDEH I	0	DEHIGH BYTE.
IDELO	0	DELOW BYTE.
IDENT	I	DENTIFY.
IDLE	0	DLE.
IDCHRDY	0	IO CHANNEL READY.
INDEX	0	INDEX.
NT	ĨQ	NTALEE.
DCS16	I	R CHP SELECT 16-BIT

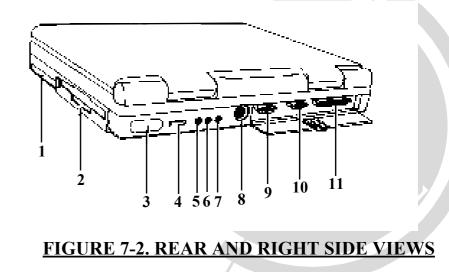
SYMBOL	TYPE	DESCRIPTION
IRO3,4	0	INTERRUPT 3 AND 4.
IRQ5	ΙØ	INTERRUPT 5
IRQ6	0	INTERRUPT 6
IRQ7	ΙO	INTERRUPT 7
IRRX	I	NFRARED RECEIVE.
IRTX	0	INFRARED TRANSM IT.
MR	I	MASTER RESET.
M FM	I/O	MFM.
M TR 0,1	0	MOTOR SELECT 0,1.
M SEN 0,1	I	MEDIA SENSE.
PD	0	POW ER DOW N.
PD0-7	I/O	PARALLEL PORT DATA .
PDACK	I	PRINTER DMA REQEST.
PW DN	I	POW ER DOW N.
PE	I	PAPER END.
PNF	I	PRINTER NOT FLOPPY.
RD	I	READ.
RDATA	I	READ DATA.
R11,2	I	RNG NDLATOR.
RTS1,2	0	REQUEST TO SENT.
SIN1,2	I	SER AL INPUT.
SLCT	I	SELECT.
SLN	ΙO	SELECT NPUT.
SOUT1,2	0	SER TAL OUTPUT.
STB	ΙØ	DATA STROBE.
STEP	0	STEP.
TC	I	TERM NAL COUNT.
TRK0	I	TRACK 0.
VDDB C		POW ER SUPPLY.
VLD0,1	I	VALID DATA.
VSSB-E		GROUND.
WAIT	I	WAI.
WR	I	WRITE.
W DATA	0	WRITE DATA.
W GATE	0	W RITE GATE.
WP	I	W RIFE PROTECT.
WRITE	0	WRITE STROBE.
X1/OSC	I	CRYTAL1/CLOCK.
X2	0	CRYTAL2.
ZW S	0	ZERO W AIT STATE.


6. SWITCH SETTING

NOTE: TO ACCESS THE SWITCH, REMOVE THE KEYBOARD AND SHIELD PLATE.


	SW 2							
CPU TY PE	1	2	3	4	5	6	7	8
INTEL P54LM -75	OFF	OFF	OFF	OFF	OFF	ON	ON	ON
INTEL P54LM 90	OFF	OFF	OFF	OFF	OFF	OFF	OFF	ON
INTEL P54LM -100	OFF	OFF	OFF	OFF	OFF	ON	OFF	ON

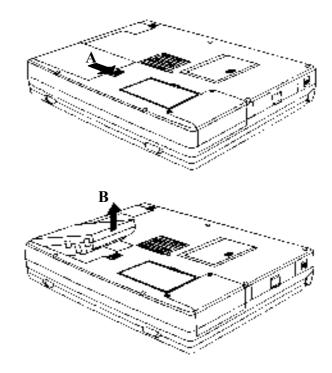
7. SYSTEM VIEW AND DISASSEMBLY


7.1 SYSTEM VIEW

POWER CONNECTOR.
 PC CARD SLOT.
 BATTERY PACK.
 TOP COVER LATCHES.

FIGURE 7-1. FRONT AND LEFT SIDE VIEWS

HARD DISK DRIVER COVER.
 3.5-INCH FLOPPY DISK DRIVE.
 SIR PORT (COM2).
 VOLUME CONTROL.
 MIC IN CONNECTOR.
 SPEAKER CONNECTOR.
 SPEAKER CONNECTOR.
 LINE IN CONNECTOR.
 AUXILIARY DEVICE PORT.
 VIDEO PORT.
 PARALLEL PORT.

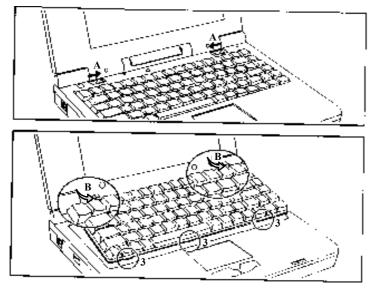

7.2 BATTERY PACK

DISASSEMBLY

1. PLACE THE COMPUTER UPSIDE DOWN. 2. RELEASE THE BATTERY PACK'S LATCH BY SLIDING IT AWAY FROM THE BATTERY PACK (FIGURE 7-3 ARROW A). 3. LIFT THE BATTERY PACK OUT OF ITS COMPARTMENT (FIGURE 7-3 ARROW B).

REASSEMBLY

1. REPLACE THE BATTERY PACK BACK INTO ITS COMPARTMENT. 2. SLIDE THE LATCH TOWARD THE BATTERY PACK TO LOCK IT INTO POSITION.


7.3 KEYBOARD

DISASSEMBLY

- **1. OPEN THE TOP COVER OF THE NOTEBOOK.**
- 2. SLIDE THE TWO KEYBOARD LATCHES INWARD (FIGURE 7-4 ARROW A).
- 3. LEVER UP THE SMALL TABS (FIGURE 7-4 ARROW B) AND DETACH THE KEYBOARD.
- 4. REMOVE ONE SCREW (FIGURE 7-4 #1) AND REMOVE THE SHIELD PLATE BY PUCHING THE THREE TABS (FIGURE 7-4 #2) DOWNWARD AND LIFTING UP.
- 5. UNPLUG THE TWO KEYBOARD CABLES (FIGURE 7-4 #3).

REASSEMBLY

- 1. RECONNECT THE TWO KEYBOARD CABLES (FIGURE 7-4 #1).
- 2. FIT THE SHIELD PLATE BACK INTO PLACE AND SECURE WITH ONE SCREW (FIGURE 7-4 #1).
- 3. INSERT THE THREE BOTTOM HOOKS (FIGURE 7-4 #3) TO THE NOTEBOOK CHASSIS AT AN ANGLE AND THEN LAY DOWN THE KEYBOARD.
- 4. SLIDE THE TWO KEYBOARD LATCHES OUTWARD TO LOCK THE KEYBOARD IN POSITION.

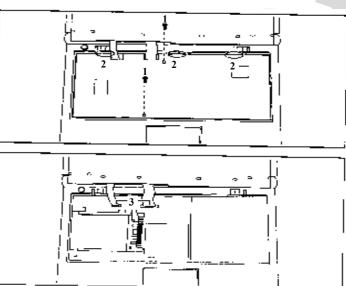


FIGURE 7-4. KEYBOARD DISASSEMBLY/REASSEMBLY

7.4 DIMM

DISASSEMBLY

1. PLACE THE NOTEBOOK UPSIDE DOWN.

2. REMOVE THE ACCESS COVER FOR DIMM 0 AND DIMM 1.

3. TO REMOVE THE DIMM, FIRST FORCE THE TWO RETAINING CLIPS OUTWARD (FIGURE 7-5 ARROW A) SO THAT THE DIMM COMES LOOSE, THEN PULL OUT THE DIMM (FIGURE 7-5 ARROW B).

REASSMEBLY

1. TO INSTALL THE DIMM, ALIGN THE DIMM'S NOTCHED END WITH THE SOCKET'S CORRESPONDING END AND FIRMLY INSERT THE DIMM INTO THE SOCKET AT AN ANGLE. THEN PUSH DOWN UNTIL THE RETAINING CLIPS LOCK THE DIMM INTO POSITION.

2. REPLACE THE ACCESS COVER.

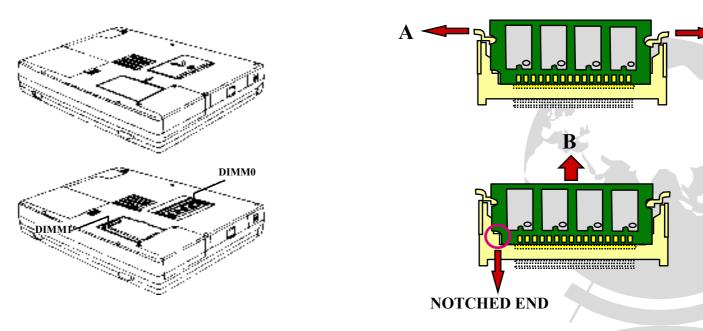


FIGURE 7-5. MEMORY MODULE DISASSEMBLY/REASSEMBLY

7.5 CPU

DISASSEMBLY

1. DETACH THE KEYBOARD WITHOUT UNPLUGGING THE KEYBOARD CABLES. (SEE SECTION 7.3 DISASSEMBLY STEPS 1 TO 4).

2. USE AN EXTRACTION TOOL TO REMOVE THE CPU.

REASSEMBLY

1. INSTALL THE CPU. 2. REPLACE THE KEYBOARD. (SEE SECTION 7-3 REASSEMBLY STEPS 2 TO 4).

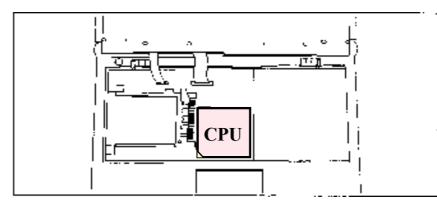


FIGURE 7-6. CPU DISASSEMBLY/REASSEMBLY

7.6 HARD DISK

DISASSEMBLY

PLACE THE NOTEBOOK UPSIDE DOWN.
 REMOVE THE TWO SCREWS (FIGURE 7-7 #1) FROM THE HARD DISK ACCESS COVER.
 REMOVE THE ACCESS COVER BY PRESSING IN THE COVER SIDE (FIGURE 7-7 ARROW A).
 UNPLUG THE HARD DISK CABLE.
 SLIDE THE HARD DISK OUT OF THE COMPARTMENT.

REASSEMBLY

SLIDE THE HARD DISK INTO ITS COMPARTMENT.
 RECONNECT THE HARD DISK CABLE.
 REPLACE THE ACCESS COVER AND SECURE WITH TWO SCREWS (FIGURE 7-7 #1).

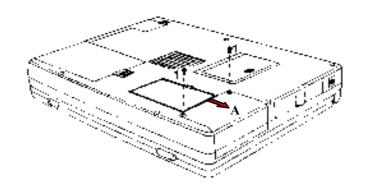


FIGURE 7-7. HARD DISK DISASSEMBLY/REASSEMBLY

7.7 CHASSIS SECTION

DISASSEMBLY

- 1. REMOVE THE BATTERY PACK. (SEE SECTION 7-2 DISASSEMBLY).
- 2. REMOVE THE KEYBOARD. (SEE SECTION 7-3 DISASSEMBLY).
- 3. PUT THE NOTEBOOK UPSIDE DOWN. REMOVE THE TWO SCREWS (FIGURE 7-8 #1) FROM THE BATTERY PACK COMPARTMENT.
- 4. REMOVE THE SEVEN BOTTOM SCREWS (FIGURE 7-8 #2).
- 5. UNPLUG THE CABLES BETWEEN THE NOTEBOOK BODY AND THE AHASSIS SECTION.
- 6. SEPARATE THE CHASSIS FROM THE NOTEBOOK BODY.

REASSEMBLY

- 1. PUT THE CHASSIS UPRIGHT. RECONNECT THE CONNECTORS FROM THE NOTEBOOK BODY TO THE CHASSIS SECTION.
- 2. ALIGN THE NOTEBOOK BODY WITH THE CHASSIS BY FIRST ALIGNING THE POWER BUTTON AND SUSPEND BUTTON WITH THE CORRESPONDING OPENING. THEN FIX THE NOTEBOOK BODY AND CHASSIS TOGETHER. BE CAREFUL NOT TO LEAVE ANY CABLES OUTSIDE.
- 3. CAREFULLY PLACE THE NOTEBOOK UPSIDE DOWN. REPLACE THE NINE SCREWS (FIGURE 7-8 #1).
- 4. REPLACE THE KEYBOARD. (SEE SECTION 7-3 REASSEMBLY).
- 5. REPLACE THE BATTERY PACK. (SEE SECTION 7-2 REASSEMBLY).

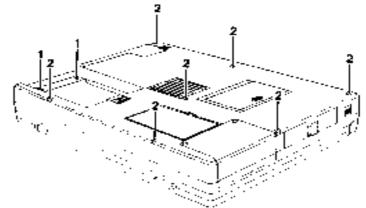
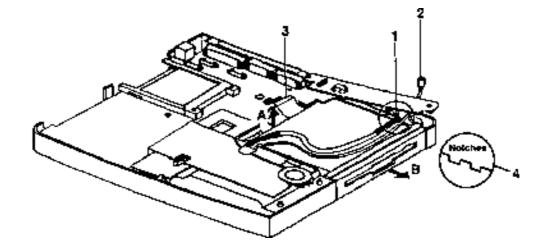


FIGURE 7-8. CHASSIS SECTION DISASSEMBLY/REASSEMBLY

7.8 FLOOPY DISK DRIVE


DISASSEMBLY

1. SEPARATE THE CHASSIA SECTION FROM THE NETEBOOK BODY. (SEE SECTION 7.7 DISASSEMBLY).

- 2. UNPLUG THE AUDIO CABLE (FIGURE 7-9 #1) AND MICROPHONE CABLE (FIGURE 7-9 #2).
- 3. REMOVE THE TAPES THAT ATTACH THE AUDIO AND MICROPHONE CABLE TO THE FLOPPY DISK DRIVE.
- 4. UNPLUG THE FLOPPY DISK DRIVE DATA CABLE (FIGURE 7-9 #3).
- 5. TO REMOVE THE FLOPPY DISK DRIVE, FIRST LIFT UP ITS END (FIGURE 7-9 ARROW A) TO UNLOCK AND THEN SLIDE IT OUT OF ITS COMPARTMENT (FIGURE 7-9 ARROW B).

REASSEMBLY

- 1. TO REPLACE THE FLOPPY DISK DRIVE, FIRST SLIDE IT ALL THE WAY INTO THE COMPARTMENT WITH ITS END LIFTED AND THEN PRESS DOWN THE END TO LOCK THE DISK DRIVE INTO PLACE.
- 2. RECONNECT THE DATA CALE (FIGURE 7-9 #3).
- 3. RECONNECT THE AUDIO CABLE (FIGURE 7-9 #1) AND THE MICROPHONE CABLE (FIGURE 7-9 #2). FIT THE CABLES TO THE CORRESPONDING NOTCHES (FIGURE 7-9 #4).
- 4. REPLACE THE TAPES.
- 5. REPLACE THE CHASSIS. (SEE SECTION 7.7 REASSEMBLY).

FIGURE 7-9. FLOPPY DISK DRIVE DISASSEMBLY/REASSEMBLY

7.9 DC/AC BOARD

DISASSEMBLY

SEPARATE THE CHASSIS SECTION FROM THE NOTEBOOK BODY. (SEE SECTION 7.7 DISASSEMBLY).
 UNPLUG THE TWO CABLES FROM THE DC/AC BOARD.
 REMOVE ONE SCREW (FIGURE 7-10 #1) AND LIFT THE DC/AC BOARD FREE.

REASSEMBLY

1. FIX THE DC/AC BOARD INTO PLACE AND REPLACE THE SCREW (FIGURE 7-10 #1). 2. RECONNECT THE TWO CABLES. 3. REPLACE THE CHASSIS. (SEE SECTION 7.7 REASSEMBLY).

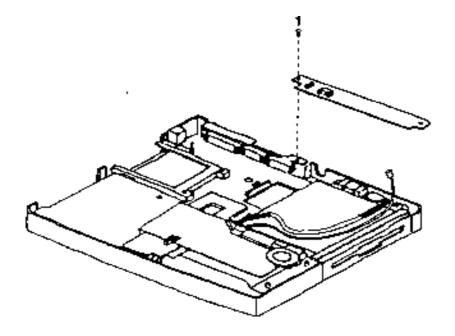


FIGURE 7-10. DC/AC BOARD DISASSEMBLY/REASSEMBLY

7.10 DC/DC BOARD

DISASSEMBLY

SEPARATE THE CHASSIS SECTION FROM THE NOTEBOOK BODY. (SEE SECTION 7.7 DISASSEMBLY).
 LIFT ONE END OF THE SHIELD PLATE (FIGURE 7-11 ARROW).
 UNPLUG THE CABLE (FIGURE 7-11 #1) FROM THE DC/DC BOARD.
 REMOVE ONE SCREW (FIGURE 7-11 #2) AND LIFT THE DC/DC BOARD DREE.

REASSEMBLY

FIX THE DC/DC BOARD INTO PLACE AND REPLACE THE SCREW (FIGURE 7-11 #2).
 RECONNECT THE CABLE (FIGURE 7-11 #1).
 REPLACE THE SHIELD PLATE.
 REPLACE THE CHASSIS. (SEE SECTION 7-7 REASSEMBLY).

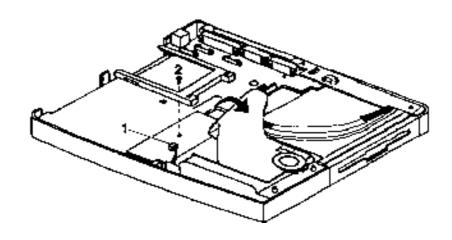


FIGURE 7-11. DC/DCBOARD DISASSEMBLY/REASSEMBLY

7.11 SPEAKER

DISASSEMBLY

SEPARATE THE CHASSIS SECTION FROM THE NOTEBOOK BODY. (SEE SECTION 7.7 DISASSEMBLY).
 UNPLUG THE SPEAKER CABLE (FIGURE 7-12 #1).
 REMOVE THE SPEAKER BY PULLING IT OFF THE CHASSIS.

REASSEMBLY

 ALIGN THE SPEAKER WITH ITS SEAT IN THE WAY THAT THE METAL PARTS ON THE BOTTOM OF THE SPEAKER CONTAINING THE CABLE ENDS FACE THE RIGHT. THE PURPOSE IS TO AVOID THE METAL PARTS CONTACT WITH THE PLASTIC SURFACE OF THE CHASSIS. THEN, ATTACH THE SPEAKER TO ITS SEAT WITH THE TAPE PROVIDED.
 FIX THE CABLE IN THE FOLDS (FIGURE 7-12 #2) AND RECONNECT THE CABLE (FIGURE 7-12 #1).
 REPLACE THE CHASSIS. (SEE SECTION 7.7 REASSEMBLY).

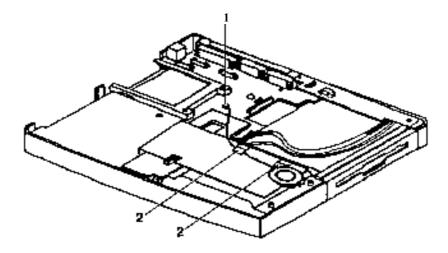
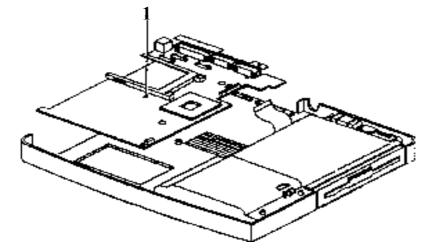


FIGURE 7-12. SPEAKER DISASSEMBLY/REASSEMBLY


7.12 SYSTEM BOARD

DISASSEMBLY

REMOVE THE HARD DISK DRIVE. (SEE SECTION 7.6 DISASSEMBLY).
 SEPARATE THE CHASSIS SECTION FROM THE NOTEBOOK BODY. (SEE SECTION 7.7 DISASSEMBLY).
 REMOVE THE DC/DC BOARD. (SEE SECTION 7.10 DISASSEMBLY).
 REMOVE THE DC/AC BOARD. (SEE SECTION 7.9 DISASSEMBLY).
 UNPLUG ALL CONNECTORS FROM THE SYSTEM BOARD.
 REMOVE ONE SCREW (FIGURE 7-13 #1) FROM THE SYSTEM BOARD.
 REMOVE THE SYSTEM BOARD FREE.

REASSEMBLY

ALIGN THE SYSTEM BOARD WITH THE CHASSIS AND REPLACE THE SCREW (FIGURE 7-13 #1).
 RECONNECT ALL CONNECTORS.
 REPLACE THE DC/AC BOARD. (SEE SECTION 7.9 REASSEMBLY).
 REPLACE THE DC/DC BOARD. (SEE SECTION 7.10 REASSEMBLY).
 REPLACE THE CHASSIS. (SEE SECTION 7.7 REASSEMBLY).
 REPLACE THE HARD DISK DRIVE. (SEE SECTION 7.6 REASSEMBLY).

FIGURE 7-13. SYSTEM BOARD DISASSEMBLY/REASSEMBLY

7.13 LCD

DISASSEMBLY

1. REMOVE THE HINGE COVERS BY INSERTING A FLAT SCREWDRIVER TO FORCE THEM OUT (FIGURE 7-14 ARROW). 2. OPEN THE LCD/COVER.

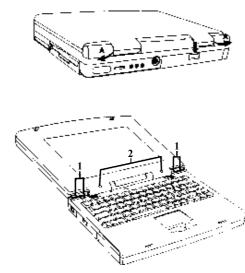
3. REMOVE THE FOUR SCREWS (FIGURE 7-14 #1) UNDER THE HINGE COVERS AND THE TWO SCREWS UNDER THE RUBBER CUSHIONS (FIGURE 7-14 #2).

4. CLOSE THE LCD/COVER AND SEPARATE THE LCD HOUSING FROM THE LCD.

5. UNPLUG ALL CONNECTORS FROM THE LCD.

6. REMOVE THE FOUR SCREWS (FIGURE 7-14 #3) SECURING THE LCD TO THE LCD PANEL AND LIFT THE LCD FREE.

REASSEMBLY


1. ALIGN THE LCD WITH THE LCD PANEL AND SECURE WITH FOUR SCREWS (FIGURE 7-14 #3). 2. RECONNECT ALL THE CABLES.

3. ALIGN AND FIX THE LCD HOUSING INTO PLACE.

4. REPLACE THE SIX SCREWS (FIGURE 7-14 #1 & #2).

5. CLOSE THE LCD/COVER.

6. REPLACE THE TWO HINGE COVERS.

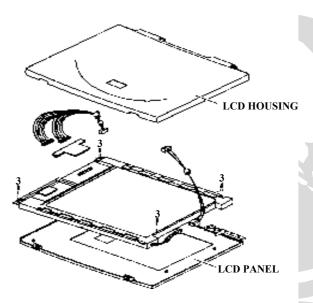


FIGURE 7-14. LCD DISASSEMBLY/REASSEMBLY

8. MAINTENANCE DIAGNOSTICS

8.1 INTRODUCTION

EACH TIME THE COMPUTER IS TURNED ON, THE SYSTEM BIOS RUNS A SERIES OF INTERNAL CHECKS ON THE HARDWARE. THIS POWER-ON SELF TEST (POST) ALLOWS THE COMPUTER TO DETECT PROBLEMS AS EARLY AS THE POWER-ON STAGE. ERROR MESSAGES OF POST CAN ALERT YOU TO THE PROBLEMS OF YOUR COMPUTER.

IF AN ERROR IS DETECTED DURING THESE TESTS, YOU WILL SEE AN ERROR MESSAGE DISPLAYED ON THE SCREEN. IF THE ERROR OCCURS BEFORE THE DISPLAY IS INITIALIZED, THEN THE SCREEN CANNOT DISPLAY THE ERROR MESSAGE. ERROR CODES OR SYSTEM BEEPS ARE USED TO IDENTIFY A POST ERROR THAT OCCURS WHEN THE SCREEN IS NOT AVAILABLE.

THE VALUE FOR THE DIAGNOSTIC PORT (378H) IS WRITTEN AT THE BEGINNING OF THE TEST. THEREFORE, IF THE TEST FAILED, THE USER CAN DETERMINE WHERE THE PROBLEM OCCURRED BY READING THE LAST VALUE WRITTEN TO PORT 378H BY THE PIO DEBUG BOARD PLUG AT PIO PORT.

8. MAINTENANCE DIAGNOSTICS

8.2 ERROR CODES

FOLLOWING IS A LIST OF ERROR CODES IN SEQUENCE DISPLAY ON THE PIO DEBUG BOARD.

CODE	BEEP	DESCR PTION
02		VERIFY REAL MODE
04		GET PCU TYPE
06		NITALIZE SYSTEM HARDWARE
08		NIFALZE CHIPSET REGISTERS WITH NIFAL POST VALUES
09		SETIN POST FLAG
0A		NITALIZE CPU REGISTERS
0C		NITALZE CACHE TO NITAAL POST VALUES
0E		NITALZE IO
0F		NITALIZE THE LOCAL BUS DE
10		NITALIZE POW ER MANAGEMENT
11		LOAD ALTERNATE REGISTERS WITH INITIAL POST VALUES
12		JUM P TO USERPATCH0
14		NITALIZE KEYBOARD CONTROLLER
16	2-2-3	BDS ROM CHECKSUM
18		8254 TM ER INITALIZATION
1A		8237 DM A CONTROLLER IN ITALIZATION
1C		RESET PROGRAM MABLE INTERRUPT CONTROLLER
20	3-1-1	TEST DRAM REFRESH
22	3-1-3	TEST 8742 KEYBOARD CONTROLLER
24		SET ES SEGM ENT REGISTER TO 4GB
28		AUTOSIZE DRAM
2A		CLEAR 512K BASE RAM
2C	3-4-1	TEST 512K BASE ADDRESS LINES
2E	3-4-3	TEST 512K BASE M EM ORY
32		TEST CPU BUS-CLOCK FREQUENCY
34		TEST CM OS RAM
35		NICALIZE ALTERNATE CHIPSET REGISTERS.
37		RENIFALZE THE CHIPSET (MB ONLY)
38		SHADOW SYSTEM BIDS ROM
39		RENIFALIZE THE CAHEMB ONLY)

CODE	BEEP	DESCR PTION
3A		AAUTOSIZE CACHE
3C		CONFIGURE ADVANCED CHIPSET REGISTERS
3D		LOAD ALTERNATE REGISTERS W ITH CM OS VALUES
40		SET NITAL CPU SPEED
42		NITALZE NTERRUPT VECTORS
44		NITALZE BOS NTERRUPTS
46	2-1-2-3	CHECK ROM COYR BHT NOTICE
47		NITALZE MANAGER FOR PCIOPTON ROM S
48		CHECK VIDEO CONFIGURATION AGAINST CM OS
49		NITALZE PCIBUS AND DEVICES
4A		NITALZE ALL VIDEO ADAPTER IN SYSTEM
4C		SHADOW VIDEO BIDS ROM
4E		DISPLAY COPYRIGHT NOTICE
50		DISPLAY CPU TYPE AND SPEED.
51		NTALZE ESA BOARD.
52		TEST KEYBOARD
54		SET KEY CLICK IF ENABLED.
56		ENABLED KEYBOARD.
58	2-2-3-1	TEST FOR UNEXPECTED INTERRUPTD
5A		DISPLAY PROM PT "PRESS F2 T OENTER SETUP"
5C		TEST RAM BETW EEN 512 AND 640KB
60		TEST EXTENDED M EM ORY.
62		TEST EXTENDED M EM ORY ADDRES LINES
64		JJM P TO USERPATCH1
66		CONFIGURE ADVANCED CACHER REGISTERS
68		ENABLE EXTERNAL AN CPU CACHES
6A		DISPLAY EXTERNAL CACHE SIZE
6C		DISPLAY SHADOW MESSAGE
6E		DISPLAY NON-DISPOSABLE SEGMENTS
70		DISPLAY ERROR MESSAGES

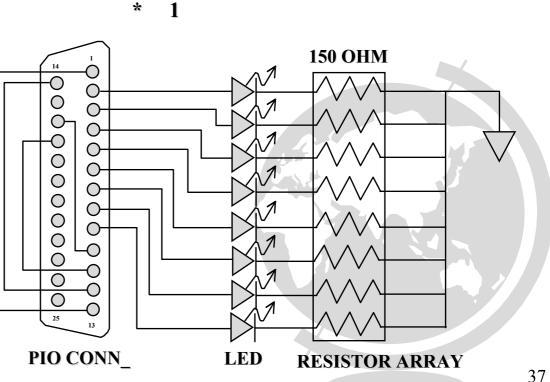
8. MAINTENANCE DIAGNOSTICS

CODE	BEEP	DESCR PTION
72		CHECK FOR CONFIGURATION ERRORS
74		TEST REAL-TM E CLOCK
76		CHECK FOR KEYBOARD ERRORS
7C		SET UP HARDW ARE INTERRUP VECTORS
7E		TEST COPROCESSOR F PRESENT
80		DISABLE ONBOARD IO PORTS
82		DETECT AN INSTALL EXTERNAL RS232 PROTS
84		DETECT AN INSTALL EXTERNAL PARALLEL PROTS
86		RE-INITIALIZE ONBOARD IO PORTS
88		NITALZE BIDS DATA AREA
8A		NIFALZE EXTENDED BOS DATA AREA
8C		NIFALZE FLOPPY CONTROLLER
90		NITALZE HARD-DISK CONTROLLER
91		NITALZE LOCAL-BUS HARD-DISK CONTROLLER
92		JUM P TO USERPATCH2
93		BULD M PTABL FOR MULIT-PROCESSOR BOARDS
94		DISABLE A 20 ADDRESS LINE
96		CLEAR HUGE ES SEGM ENT REGISTER
98		SEARCH FOT OPTION ROM S
9A		SHADOW OPTION ROM S
9C		SET UP POW ER MANAGEM ENT
9E		ENABLE HARDW ARE INTERRUPTS
A0		SET TM E OF DAY
A2		CHECK KEY CLOCK
Α4		IN ITALZETYPEMATIC RATE
A8		ERASE F2 PROM PT
AA		SCAN FOR F2KEY STROKE
AC		ENTER SETUP
AE		CLEAR N-POST FLAG
в0		CHECK FOR ERRORS

CODE	BEEP	DESCR IPTION
В2		POST DONE-PREPARE TO BOOT OPERATING SYSTEM
В4		ONE BEEP
Bб		CHECK PASSW ORD (OPTIONAL)
В8		CLEAR GLOBAL DESCRIPTOR TABLE
BC		CLEAR PARITY CHECKERS
BE		CLEAR SCREEN (OPTION)
BF		CECK VIRUS AND BACKUP REMM INDERS
C0		TRY TO BOOT W IIH INT19
D0		INTERRUPT HANDLER ERROR
D2		UNKNNOW INTERRUPT ERROR
D4		PENDING INTERRUPT ERROR
D6		NITALZE OPTION ERROR
D8		SHUTDOW N ERROR
DA		EXTENDED BLOCK MOVE
DC		SHUTDOW N 10 ERROR
		THE FOLLOW ING ARE FOR BOOT BLOCK IN FLASH ROM
E2		NIFALZE THE CHIPSET
E3		N ITA LZE REFRESH COUNTER
E4		CHECK FOR FORCED FLASH
E5		CHECK HW STATUS OF ROM
E6		BDS ROM IS OK
E7		DO A COM PLETE RAM TEST
E8		DO OEM NITALIZATION
E9		NITALZE NTERRUPT CONTROLLERREAD IN THE BOOTSTRAP CODE
EA		READ N THE BOOTSTRAP CODE
EB		NIFALZE ALL VECTORS
EC		BOOT THE FLASH PROGRAM
ED		NIFALZE TH BOOT DEVICE
EE		BOOT CODE W AS READ OK

8. MAINTENANCE DIAGNOSTICS


*


*

8

1

8.3 PIO PORT (378H) DIAGNOSTIC TOOLS

9. TROUBLE SHOOTING

9.1 NO POWER

9.2 NO DISPLAY

9.3 VGA CONTROLLER FAILURE

9.4 LCD NO DISPLAY

9.5 EXTERNAL MONITOR NO DISPLAY

9.6 MEMORY TEST ERROR

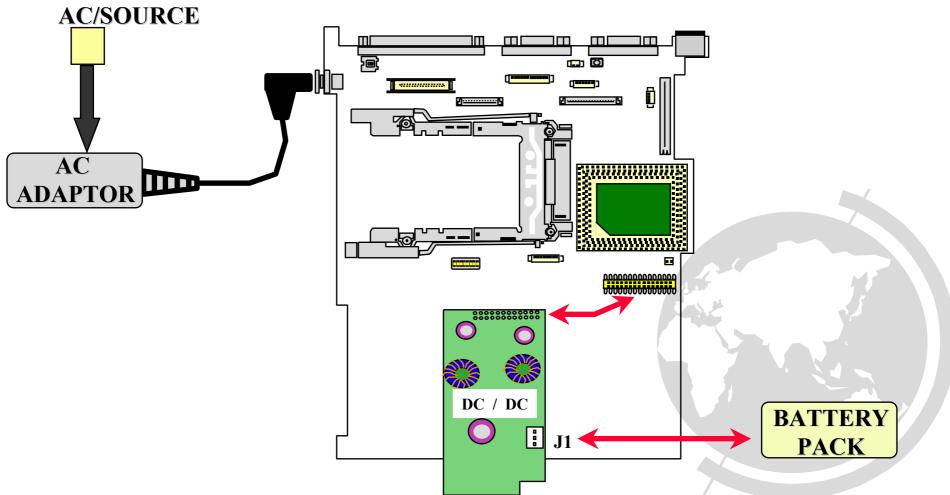
9.7 KEYBOARD TEST ERROR

9.8 TRACK PAD/BALL TEST ERROR

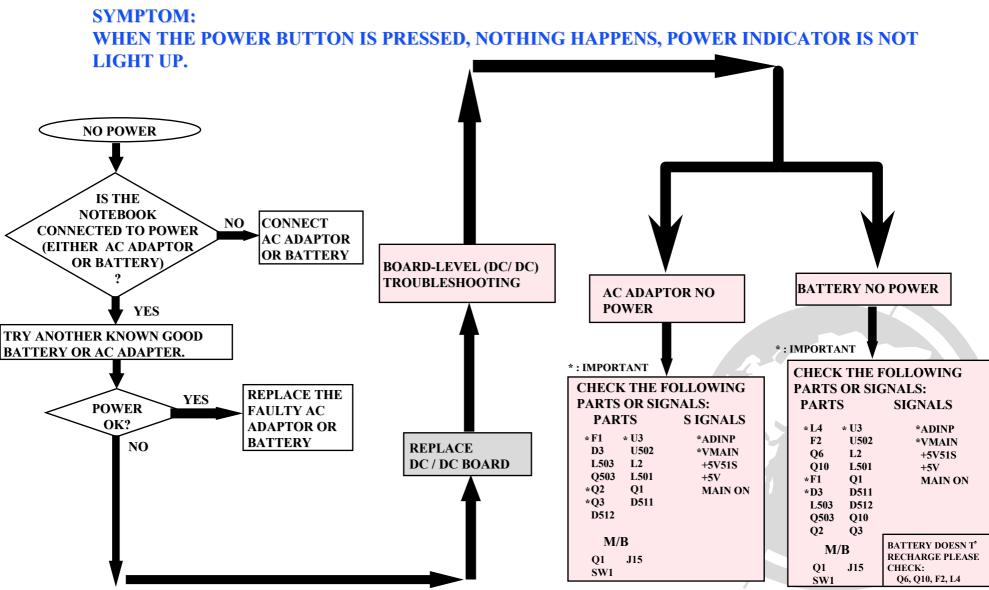
9.9 DISKETTE DRIVE TEST ERROR

9.10 HARD DRIVE OR CD-ROM TEST ERROR

9.11 CMOS TEST ERROR

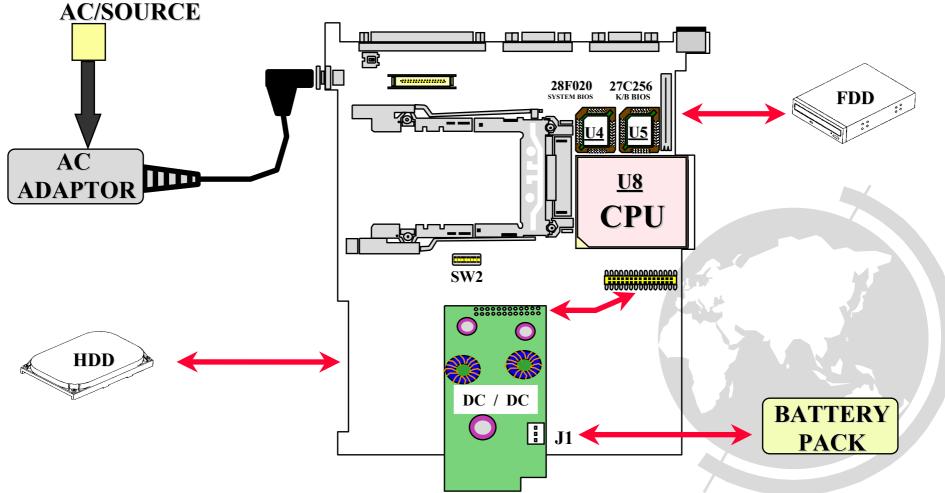

9.12 SIO PORT TEST ERROR

9.13 PIO PORT TEST ERROR


9.14 BATTERY RE-CHARGE FAILURE

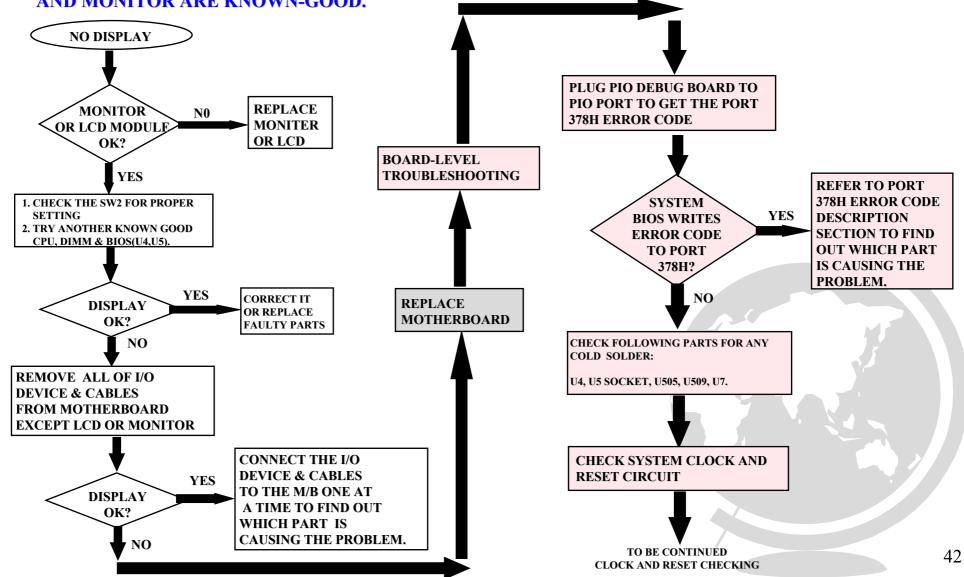
9.1 NO POWER

SYMPTOM: WHEN THE POWER BUTTON IS PRESSED, NOTHING HAPPENS, POWER INDICATOR IS NOT LIGHT UP.

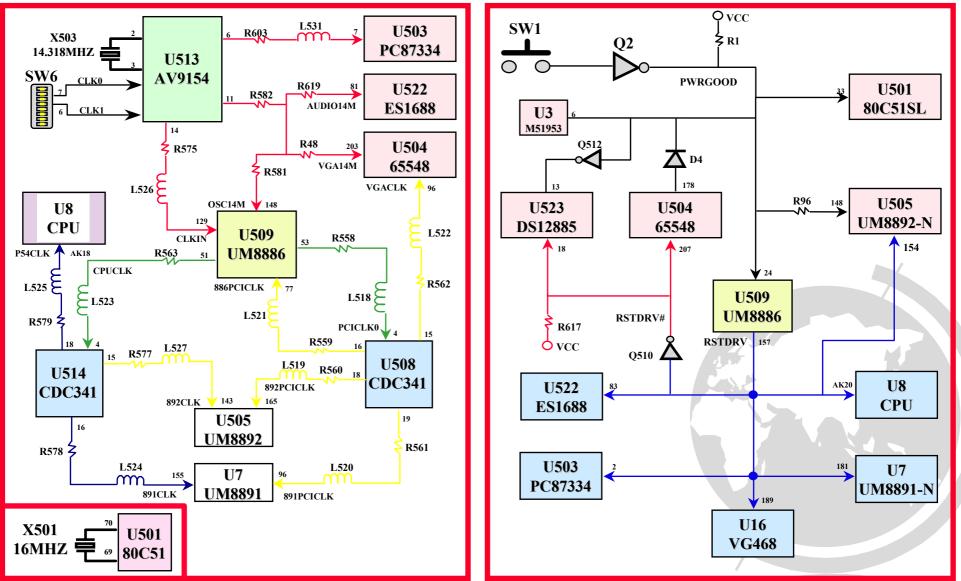

9.1 NO POWER

9.2 NO DISPLAY (SYSTEM FAILURE)

SYMPTOM:

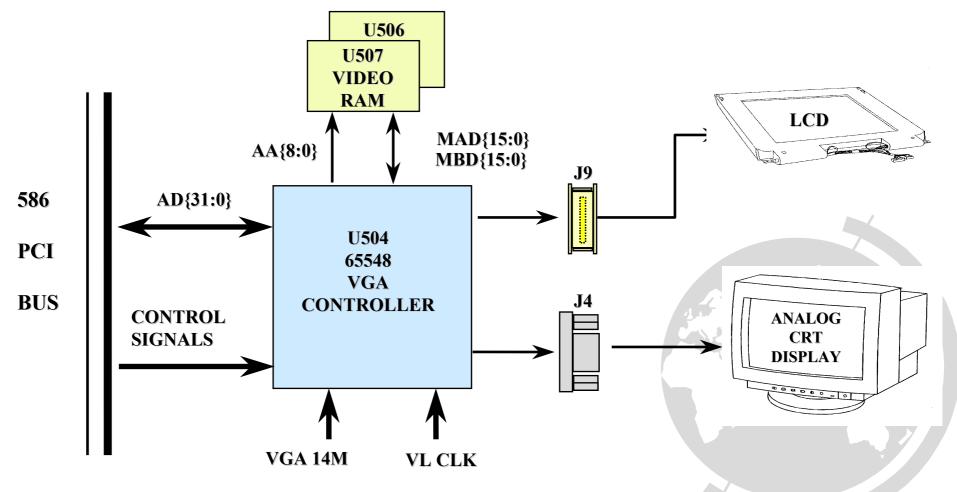

THERE IS NO DISPLAY ON BOTH LCD AND MONITOR AFTER POWER ON ALTHOUGH THE LCD AND MONITOR ARE KNOWN-GOOD.

9.2 NO DISPLAY (SYSTEM FAILURE)


SYMPTOM:

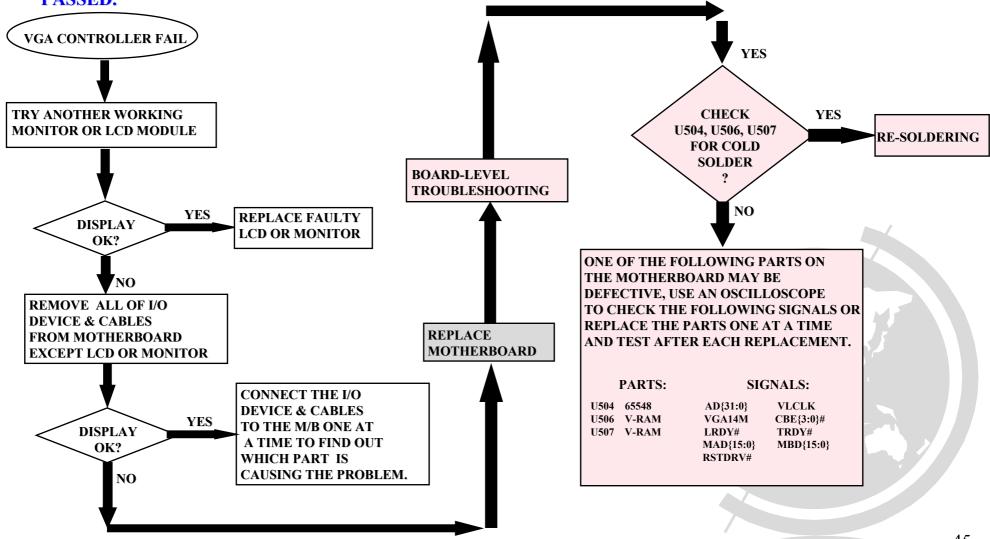
THERE IS NO DISPLAY ON BOTH LCD AND MONITOR AFTER POWER ON ALTHOUGH THE LCD AND MONITOR ARE KNOWN-GOOD.

9.2 NO DISPLAY (SYSTEM FAILURE)


******CLOCK AND RESET CIRCUIT CHECKING******

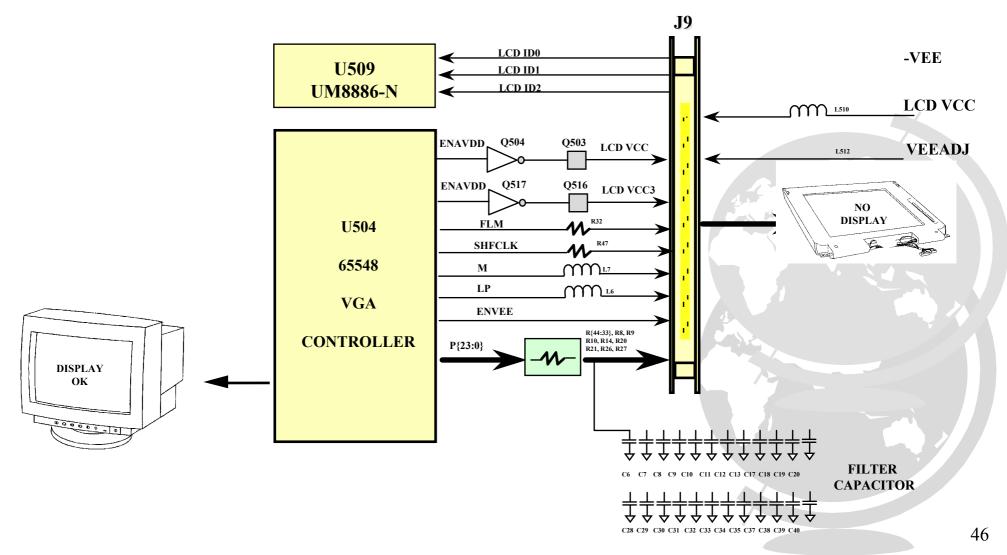
9.3 VGA CONTROLLER FAILURE

SYMPTOM:


THERE IS NO DISPLAY ON BOTH LCD AND MONITOR ALTHOUGH POWER-ON-SELF-TEST IS PASSED.

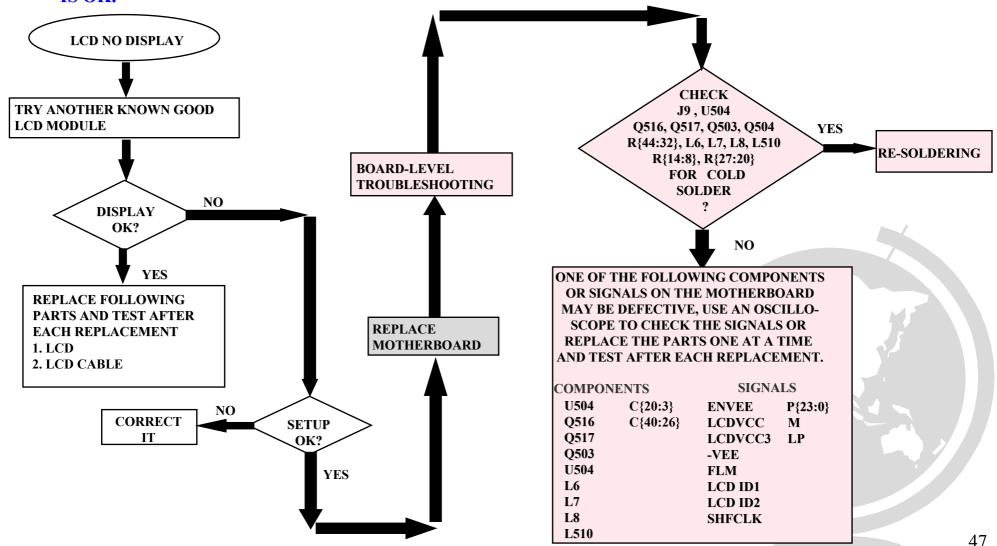
9.3 VGA CONTROLLER FAILURE

SYMPTOM:


THERE IS NO DISPLAY ON BOTH LCD AND MONITOR ALTHOUGH POWER-ON-SELF-TEST IS PASSED.

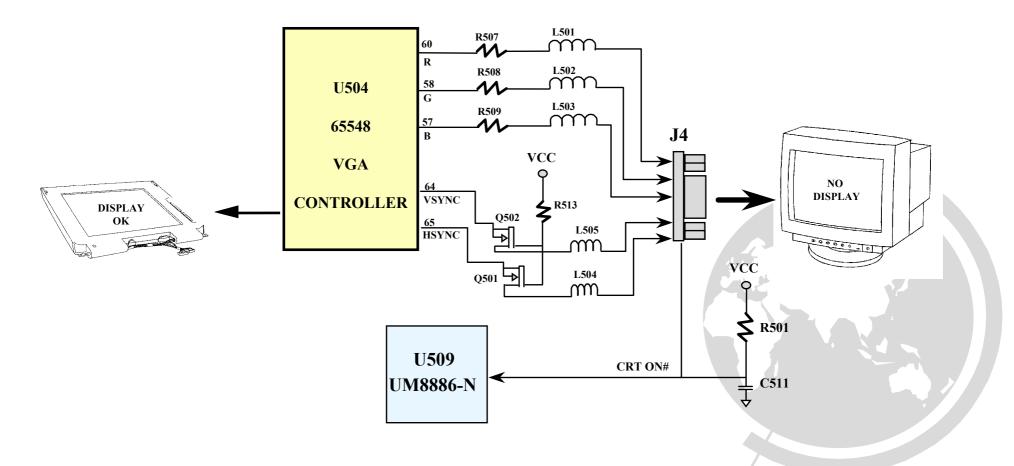
9.4 LCD NO DISPLAY OR PICTURE ABNORMAL

SYMPTOM:


THE LCD SHOWS NOTHING OR ABNORMAL PICTURE, BUT THE DISPLY ON EXTERNAL MONITOR IS OK.

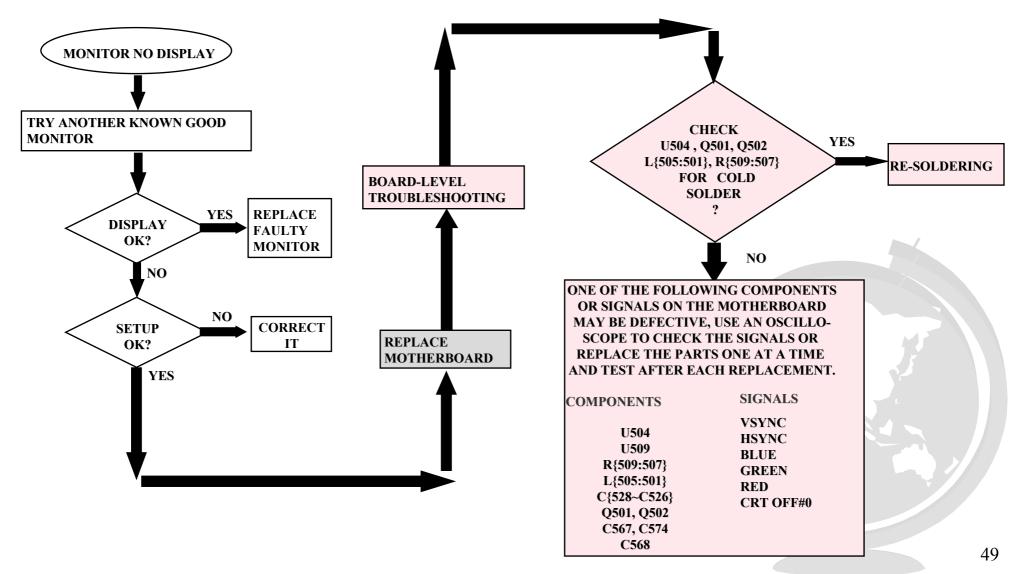
9.4 LCD NO DISPLAY OR PICTURE ABNORMAL

SYMPTOM:


THE LCD SHOWS NOTHING OR ABNORMAL PICTURE, BUT THE DISPLY ON EXTERNAL MONITOR IS OK.

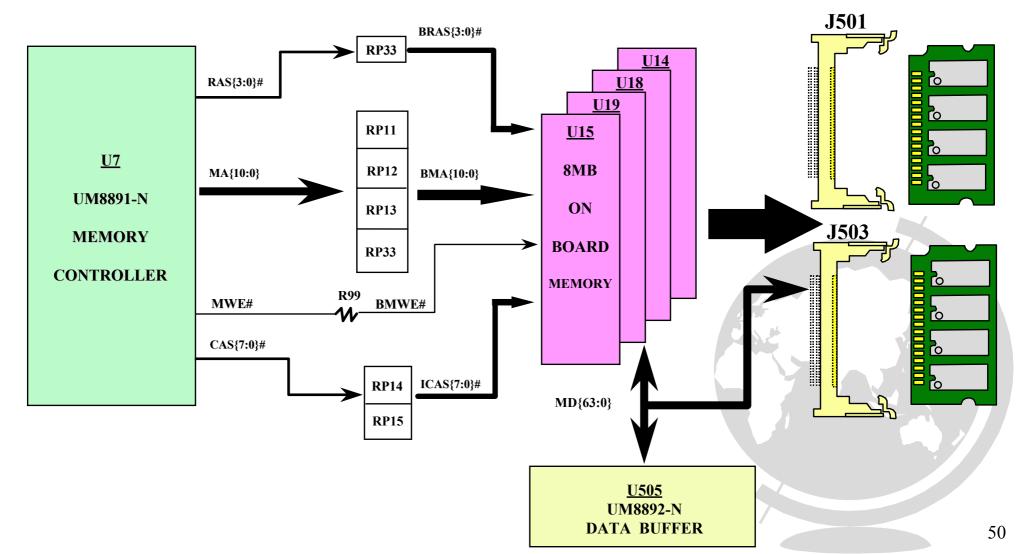
9.5 EXTERNAL MONITOR NO DISPLAY OR COLOR ABNORMAL

SYMPTOM:


THE CRT MONITOR SHOWS NOTHING OR ABNORMAL COLOR, BUT THE DISPLAY ON LCD IS OK.

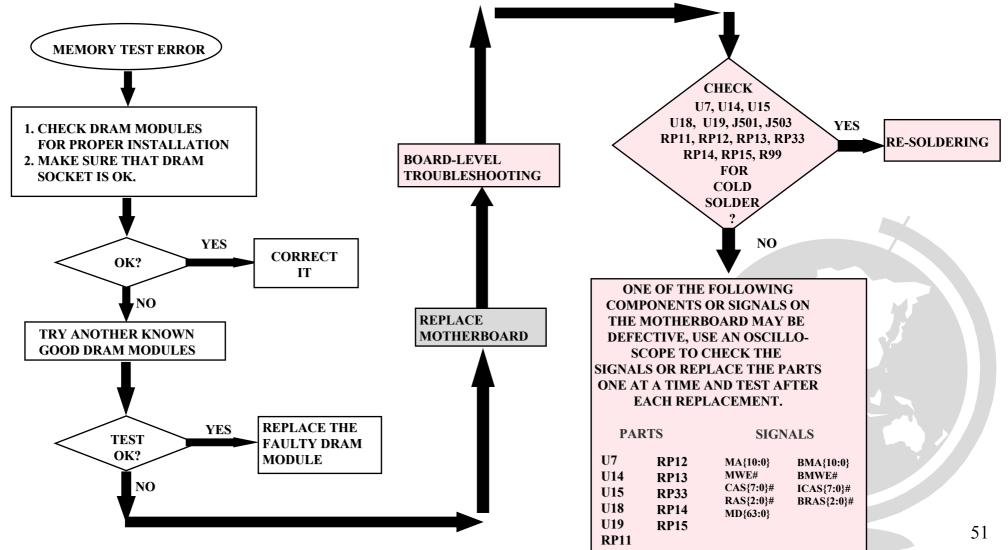
9.5 EXTERNAL MONITOR NO DISPLAY OR COLOR ABNORMAL

SYMPTOM:


THE CRT MONITOR SHOWS NOTHING OR ABNORMAL COLOR, BUT THE DISPLAY ON LCD IS OK.

9.6 MEMORY TEST ERROR

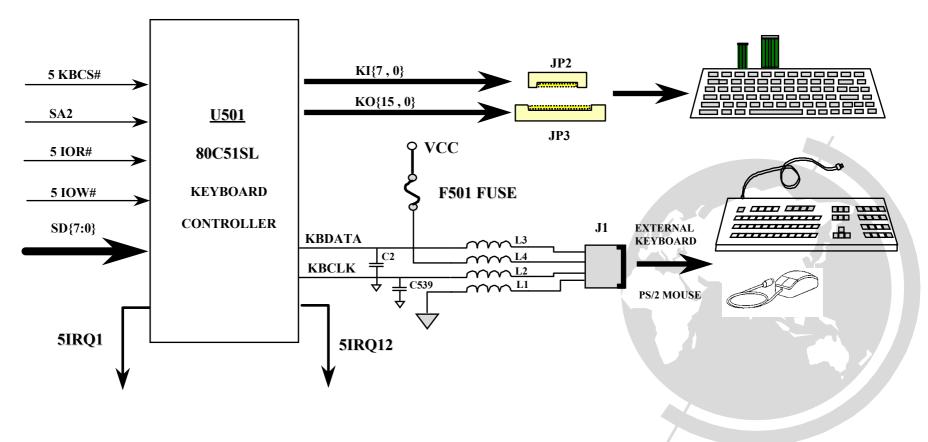
SYMPTOM:


PIO DEBUG BOARD SHOWS THE PORT **378H** ERROR CODE IS STOPPED AT **20H**, **2CH**, **2EH** OR MEMORY EXTENSION FAILURE.

9.6 MEMORY TEST ERROR

SYMPTOM:

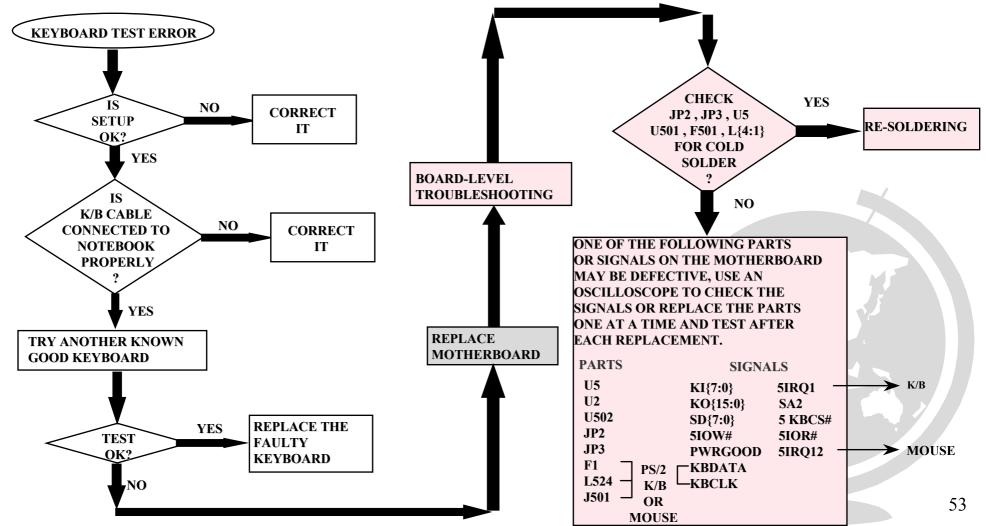
PIO DEBUG BOARD SHOWS THE PORT 378H ERROR CODE IS STOPPED AT 20H, 2CH ,2EH OR MEMORY EXTENSION FAILURE.



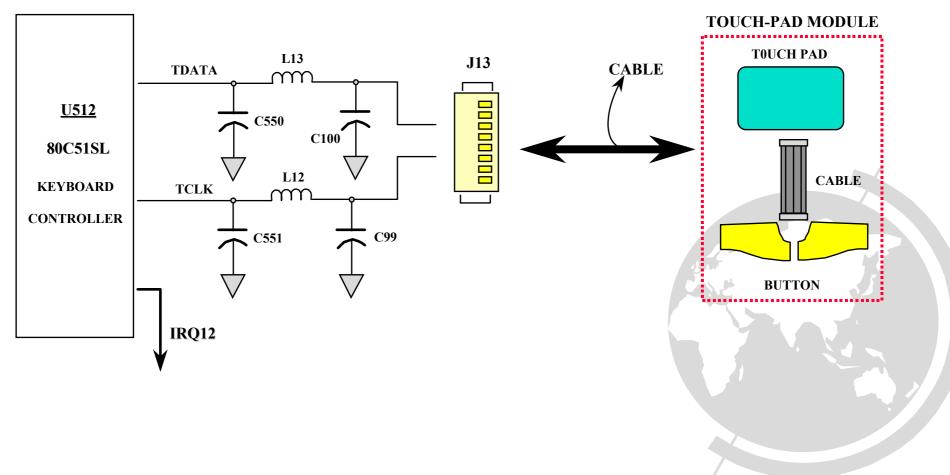
9.7 KEYBOARD TEST ERROR (INCLUDING EXTERNAL KEYBOARD & PS/2

MOUSE) SYMPTOM:

1. ERROR MESSAGE OF KEYBOARD FAILURE IS SHOWN OR ANY KEY DOESN T WORK.

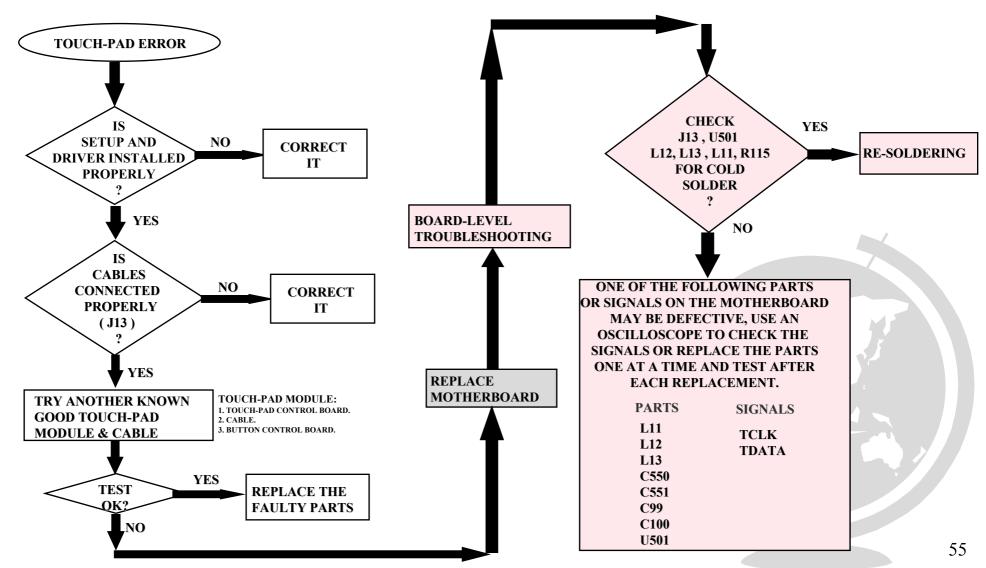

2. PIO DEBUG BOARD SHOWS THE PORT 378H ERROR CODE IS STOPPED AT 22H

9.7 KEYBOARD TEST ERROR (INCLUDING EXTERNAL KEYBOARD & PS/2

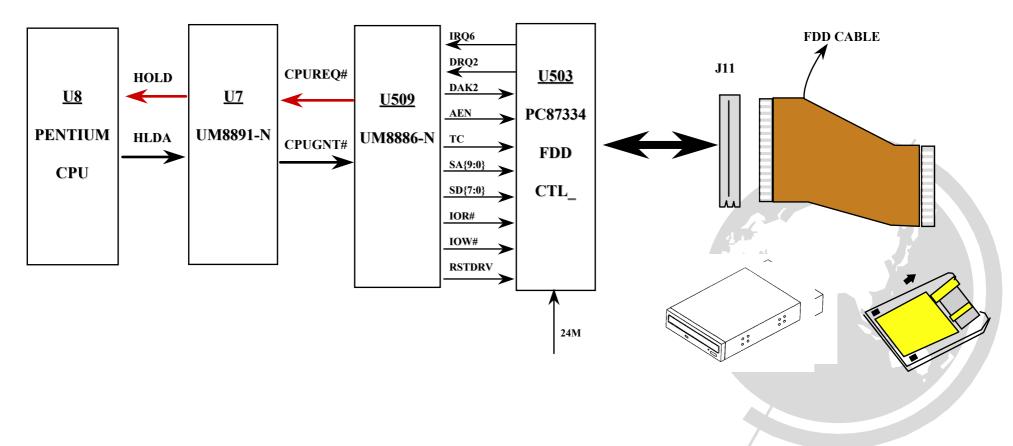

MOUSE) SYMPTOM:

- 1. ERROR MESSAGE OF KEYBOARD FAILURE IS SHOWN OR ANY KEY DOESN T WORK.
- 2. PIO DEBUG BOARD SHOWS THE PORT 378H ERROR CODE IS STOPPED AT 22H

9.8 TOUCH-PAD TEST ERROR

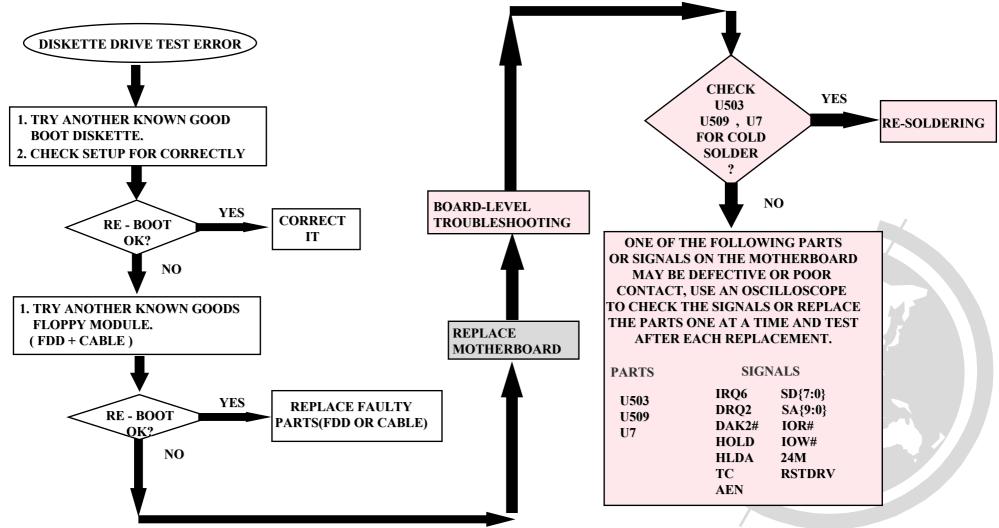

SYMPTOM: FAILURE OCCURS WHEN THE TOUCH-PAD IS ENABLED.

9.8 TOUCH-PAD TEST ERROR


SYMPTOM:

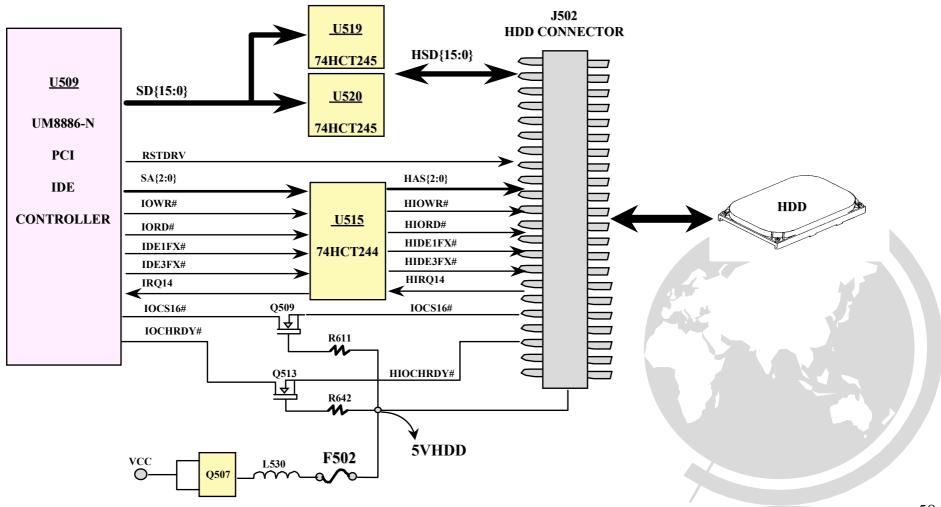
FAILURE OCCURS WHEN THE TOUCH-PAD IS ENABLED.

9.9 DISKETTE DRIVE TEST ERROR


SYMPTOM: FAILURE OCCURS WHILE LOADING DATA FROM DISK TO SYSTEM.

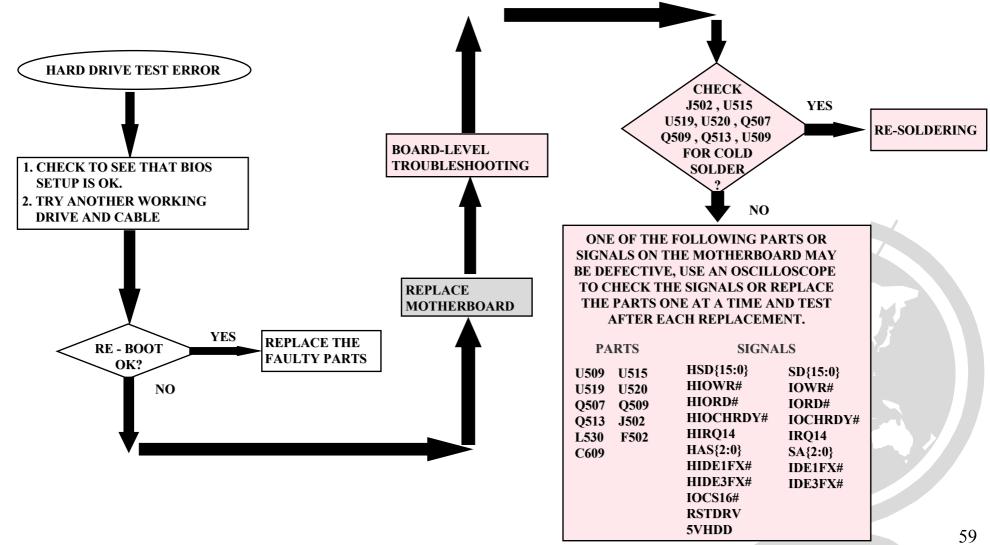
9.9 DISKETTE DRIVE TEST ERROR

SYMPTOM:


FAILURE OCCURS WHILE LOADING DATA FROM DISK TO SYSTEM.

9.10 HARD DRIVE TEST ERROR

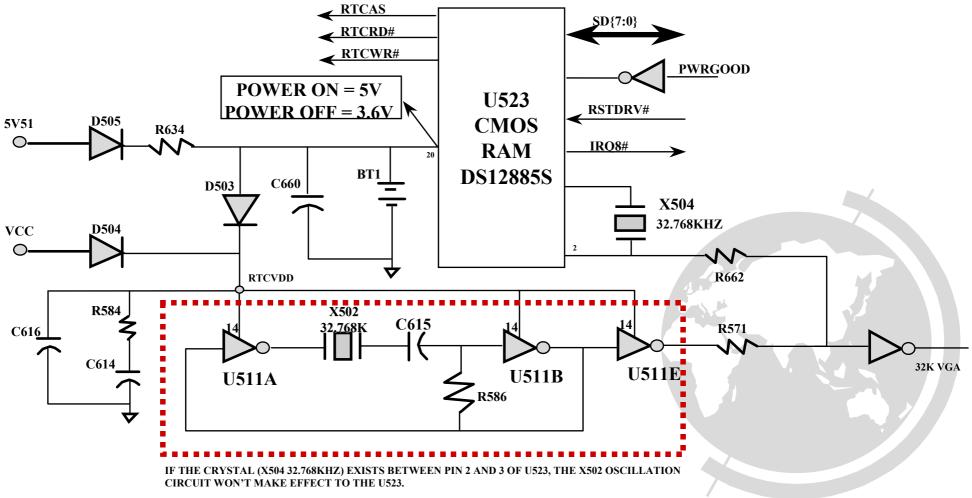
SYMPTOM:

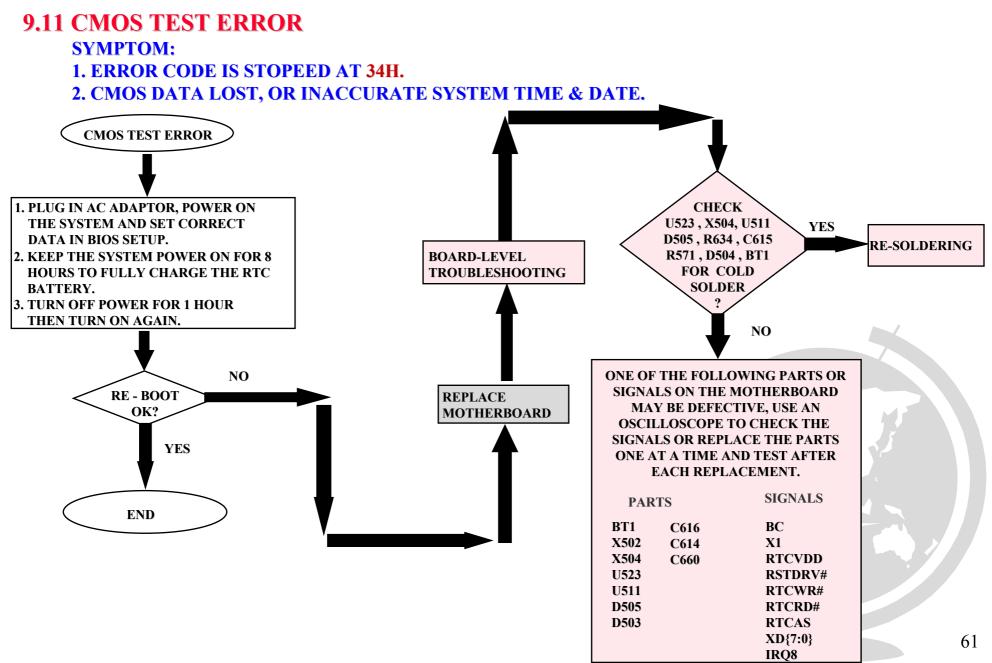

EITHER AN ERROR MESSAGE IS SHOWN, OR THE DRIVE MOTOR SPINS NON-STOP, WHILE READING DATA FROM OR WRITING DATA TO HARD-DISK.

9.10 HARD DRIVE TEST ERROR

SYMPTOM:

EITHER AN ERROR MESSAGE IS SHOWN, OR THE DRIVE MOTOR SPINS NON-STOP, WHILE READING DATA FROM OR WRITING DATA TO HARD-DISK.

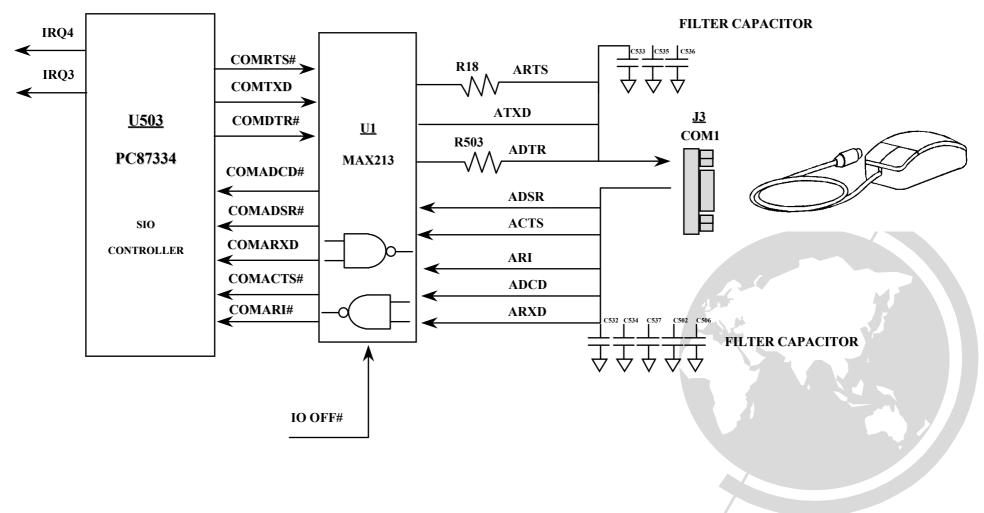



9.11 CMOS TEST ERROR

SYMPTOM:

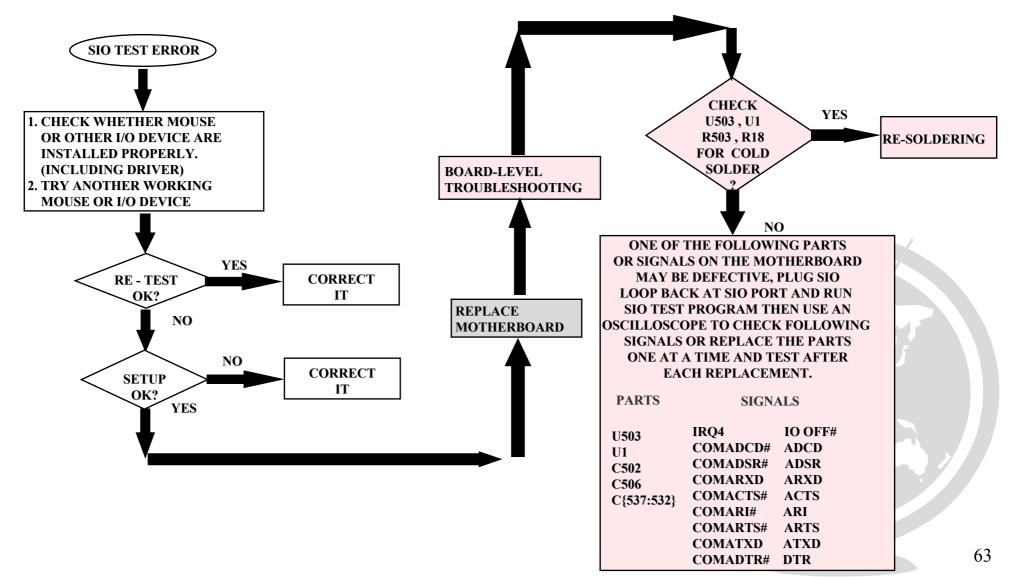
1. ERROR CODE IS STOPEED AT 34H.

2. CMOS DATA LOST, OR INACCURATE SYSTEM TIME & DATE.



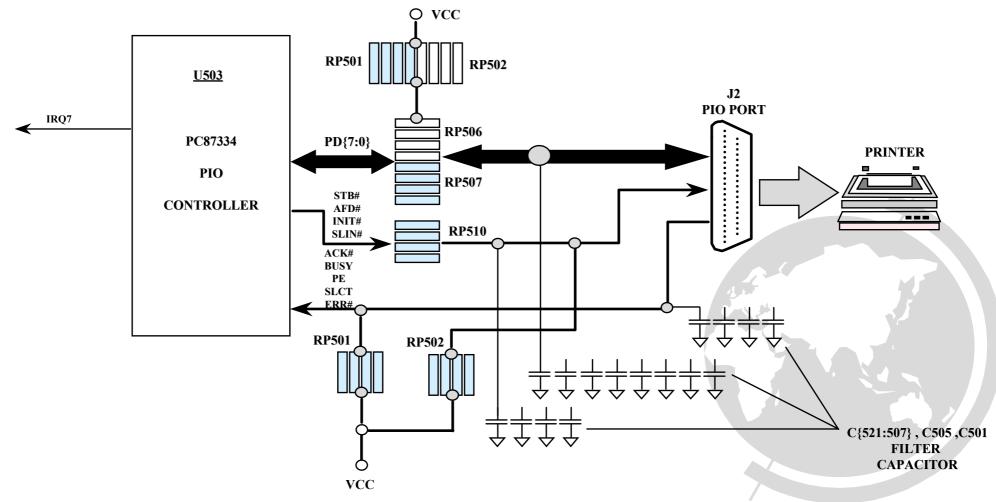
9.12 SIO PORT TEST ERROR

SYMPTON:


FAILURE OCCURS WHEN A MOUSE OR OTHER I/O DEVICE IS INSTALLED.

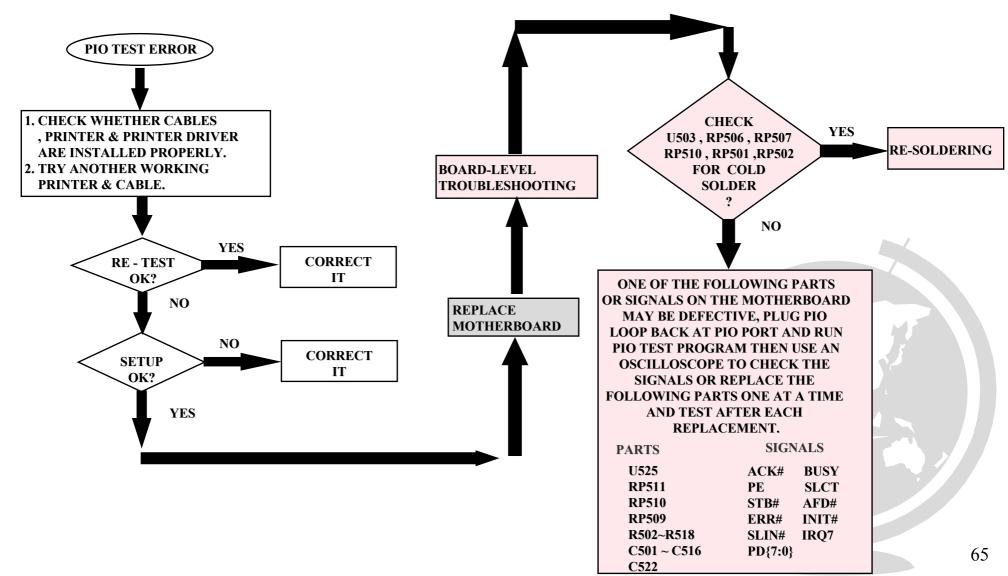
9.12 SIO PORT TEST ERROR

SYMPTON:


FAILURE OCCURS WHEN A MOUSE OR OTHER I/O DEVICE IS INSTALLED.

9.13 PIO PORT TEST ERROR

SYMPTON:

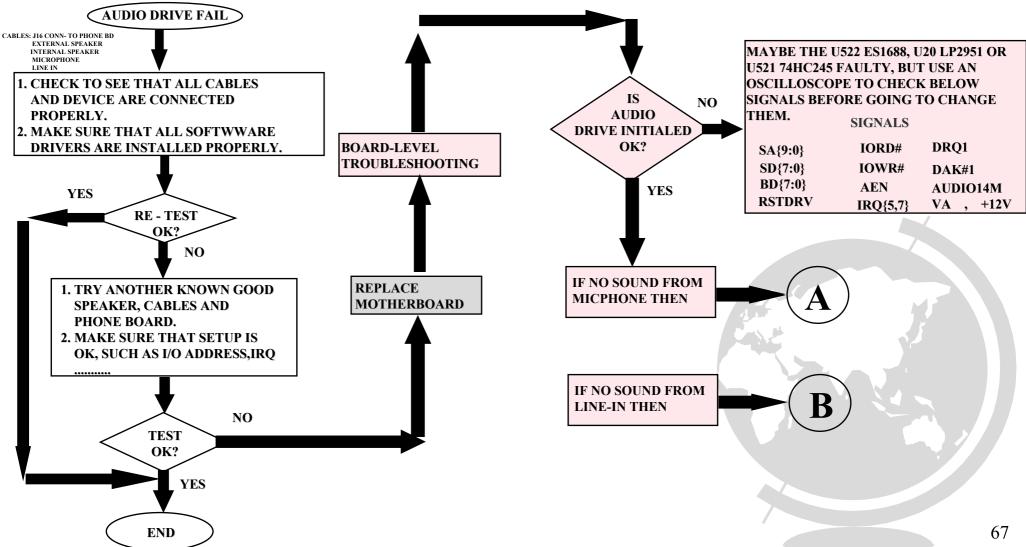

WHEN A PRINT COMMAND IS ISSUED, PRINTER PRINTS NOTHING OR GARBAGE.

9.13 PIO PORT TEST ERROR


SYMPTON:

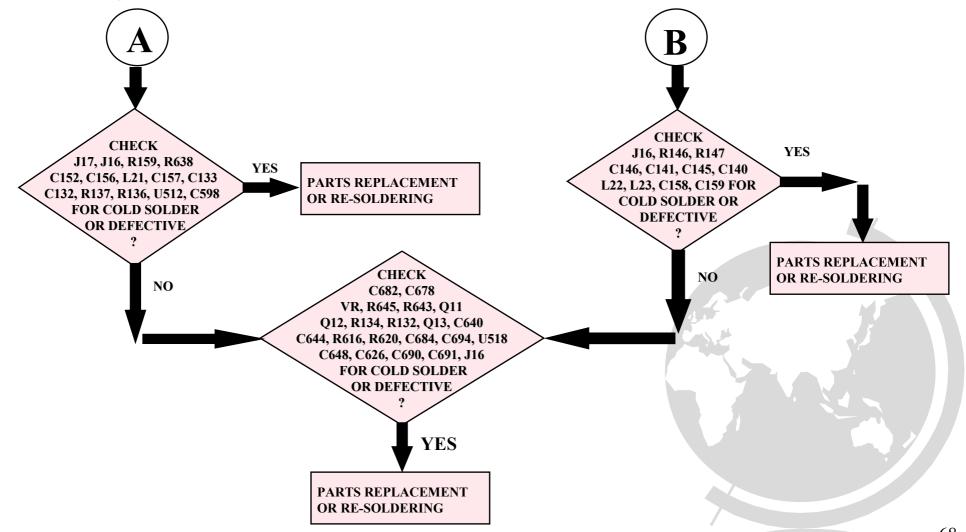
WHEN A PRINT COMMAND IS ISSUED, PRINTER PRINTS NOTHING OR GARBAGE.

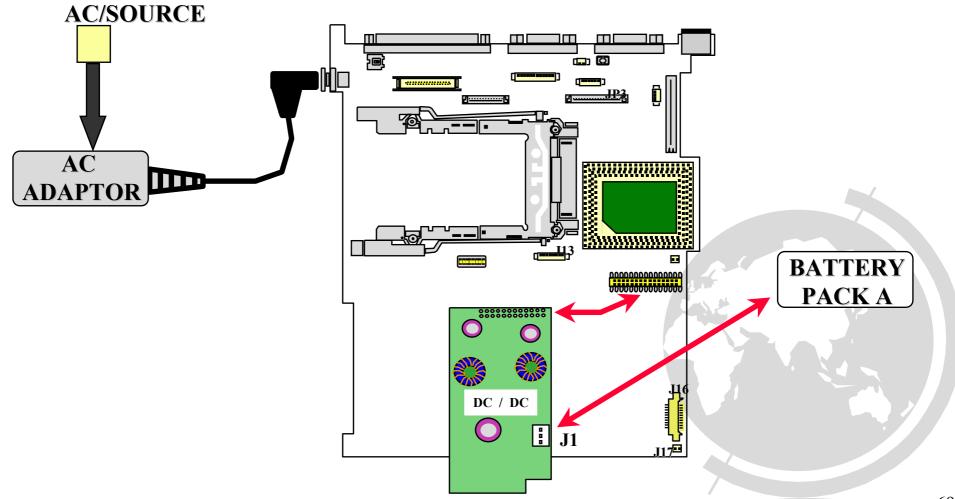
9.14 AUDIO DRIVE FAILURE


SYMPTON: NO SOUND FROM SPEAKER AFTER AUDIO DRIVE IS INSTALLED.

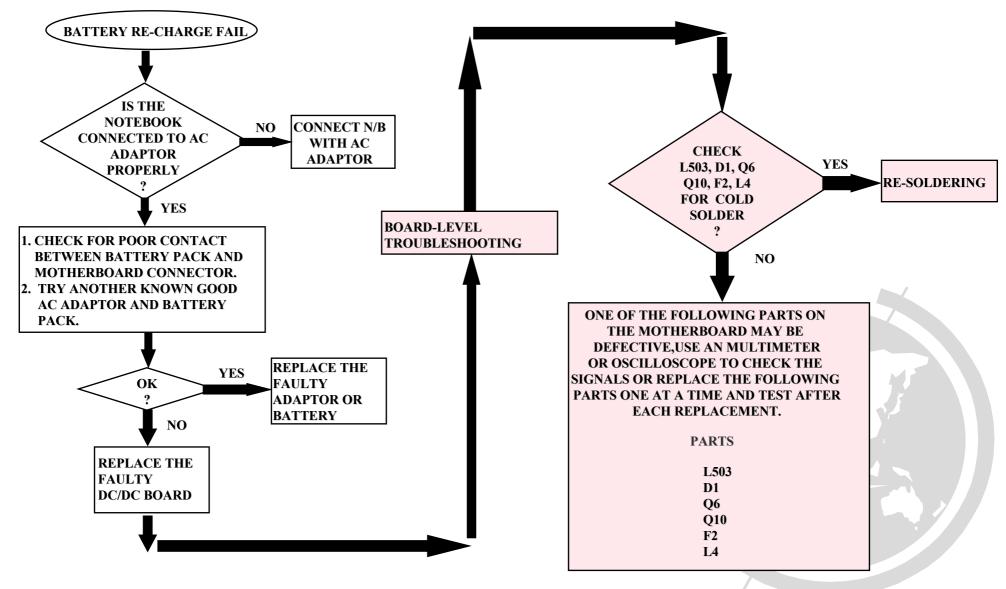
9.14 AUDIO DRIVE FAILURE

SYMPTON:


NO SOUND FROM SPEAKER AFTER AUDIO DRIVE IS INSTALLED OR NO SOUND FROM CD-ROM, MICROPHONE AND LINE IN.


9.15 AUDIO DRIVE FAILURE

SYMPTON:

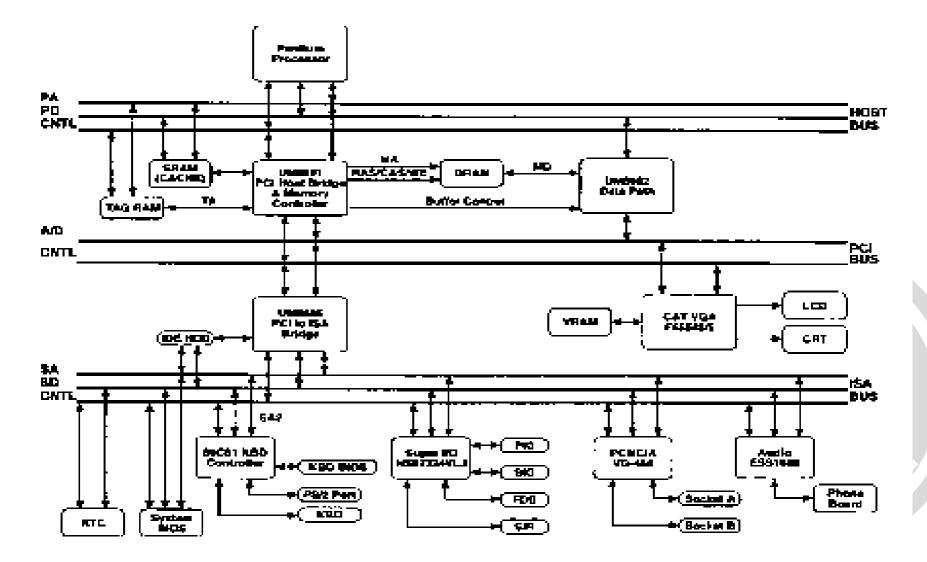

NO SOUND FROM SPEAKER AFTER AUDIO DRIVE IS INSTALLED OR NO SOUND FROM CD-ROM, MICROPHONE AND LINE IN.

9.15 BATTERY RE-CHARGE FAILURE

9.15 BATTERY RE-CHARGE FAILURE

10. SYSTEM BLOCK DIAGRAM & SCHEMATISS

10. SYSTEM BLOCK DIAGRAM & SCHEMATISS


86	87	88	89	90 91	92	93	94	95	96	97	98 99	100
101	102	103	104	105	106	107	108	109	110	111	112	113
114	115		116	117	118	119	120	121	122	123		
124	125	61	62	63	64	65	66	67 (58 69	9 70	71	72
73	74	75	76	77 78	79	80	81	82	83	84		

10. SYSTEM BLOCK DIAGRAM & SCHEMATISS

MOTHER-BOATD

DC /DC BOARD

10. SYSTEM BLOCK DIAGRAM & SCHEMATISS

